This paper deals with bounds satisfied by the effective non-symmetric conductivity of three-dimensional composites in the presence of a strong magnetic field. On the one hand, it is shown that for general composites the antisymmetric part of the effective conductivity cannot be bounded solely in terms of the antisymmetric part of the local conductivity, contrary to the columnar case studied by Briane and Milton [SIAM J. Appl. Math.70(

8
), 3272
3286
(2010)]. Thus a suitable rank-two laminate, the conductivity of which has a bounded antisymmetric part together with a high-contrast symmetric part, may generate an arbitrarily large antisymmetric part of the effective conductivity. On the other hand, bounds are provided which show that the antisymmetric part of the effective conductivity must go to zero if the upper bound on the antisymmetric part of the local conductivity goes to zero, and the symmetric part of the local conductivity remains bounded below and above. Elementary bounds on the effective moduli are derived assuming the local conductivity and the effective conductivity have transverse isotropy in the plane orthogonal to the magnetic field. New Hashin-Shtrikman type bounds for two-phase three-dimensional composites with a non-symmetric conductivity are provided under geometric isotropy of the microstructure. The derivation of the bounds is based on a particular variational principle symmetrizing the problem, and the use of Y-tensors involving the averages of the fields in each phase.

1.
Alessandrini
,
G.
and
Nesi
,
V.
, “
Univalent σ-harmonic mappings
,”
Arch. Ration Mech. Anal.
158
,
155
171
(
2001
).
2.
Alessandrini
,
G.
and
Nesi
,
V.
, “
Beltrami operators, non-symmetric elliptic equations and quantitative Jacobian bounds
,”
Ann. Acad. Sci. Fenn. Math.
34
(
1
),
47
67
(
2009
).
3.
Allaire
,
G.
,
Shape Optimization by the Homogenization Method
,
Applied Mathematical Science
, Vol. 146 (
Springer-Verlag
,
New York
,
2002
).
4.
Bensoussan
,
A.
,
Lions
,
J. L.
, and
Papanicolaou
,
G.
,
Asymptotic Analysis for Periodic Structures
, (
North-Holland
,
Amsterdam, New York
,
1978
).
5.
Bergman
,
D. J.
, “
Self-duality and the low field Hall effect in 2D and 3D metal-insulator Composites
,” in
Percolation Structures and Processes, (Annals of the Israel Physical Society)
, edited by
G.
Deutscher
,
R.
Zallen
, and
J.
Adler
(
Israel Physical Society
,
Jerusalem
,
1983
), Vol. 5, pp.
297
321
.
6.
Bergman
,
D. J.
,
Li
,
X.
, and
Strelniker
,
Y. M.
, “
Macroscopic conductivity tensor of a three-dimensional composite with a one- or two-dimensional microstructure
,”
Phys. Rev. B
71
,
035120
(
2005
).
7.
Bergman
,
D. J.
and
Strelniker
,
Y. M.
, “
Duality transformation in a three-dimensional conducting medium with two-dimensional heterogeneity and an in-plane magnetic field
,”
Phys. Rev. Lett.
80
,
3356
3359
(
1998
).
8.
Bergman
,
D. J.
and
Strelniker
,
Y. M.
, “
Strong-field magneto-transport of conducting composites with a columnar microstructure
,”
Phys. Rev. B
59
,
2180
2198
(
1999
).
9.
Bergman
,
D. J.
and
Strelniker
,
Y. M.
Magneto-transport in conducting composite films with a disordered columnar microstructure and an in-plane magnetic field
,”
Phys. Rev. B
60
,
13016
13027
(
1999
).
10.
Bergman
,
D. J.
,
Strelniker
,
Y. M.
, and
Sarychev
,
A. K.
, “
Recent advances in strong field magneto-transport in a composite medium
,”
Phys. A
241
,
278
283
(
1997
).
11.
Berryman
,
J. G.
, “
Effective medium theory for elastic composites
,” in
Elastic Waves Scattering and Propagation: Based on Presentations made at a Special Session of the Midwestern Mechanics Conference Held at the University of Michigan
, edited by
V. K.
Varadan
and
V. V.
Varadan
, Ann Arbor, Michigan: Ann Harbor Science, May 7–9,
1981
, pp.
111
129
.
12.
Briane
,
M.
, “
Correctors for the homogenization of a laminate
,”
Adv. Math. Sci. Appl.
4
,
357
379
(
1994
).
13.
Briane
,
M.
and
Milton
,
G. W.
,“
Homogenization of the three-dimensional Hall effect and change of sign of the Hall coefficient
,”
Arch. Ration Mech. Anal.
193
,
715
736
(
2009
).
14.
Briane
,
M.
and
Milton
,
G. W.
, “
Giant Hall effect in composites
,”
Multiscale Model. Simul.
7
,
1405
1427
(
2009
).
15.
Briane
,
M.
and
Milton
,
G. W.
New bounds on strong field magneto-transport in multiphase columnar composites
,”
SIAM J. Appl. Math.
70
(
8
),
3272
3286
(
2010
).
16.
Briane
,
M.
,
Manceau
,
D.
, and
Milton
,
G. W.
, “
Homogenization of the two-dimensional Hall effect
,”
J. Math. Anal. Appl.
339
,
1468
1484
(
2008
).
17.
Cherkaev
,
A. V.
and
Gibiansky
,
L. V.
, “
Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli
,”
J. Math. Phys.
35
,
127
145
(
1994
).
18.
Fannjiang
,
A.
and
Papanicolaou
,
G.
, “
Convection enhanced diffusion for periodic flows
,”
SIAM J. Appl. Math.
54
,
333
408
(
1994
).
19.
Gibiansky
,
L. V.
and
Milton
,
G. W.
, “
On the effective viscoelastic moduli of two-phase media. I. Rigorous bounds on the complex bulk modulus
,”
Proc. Roy. Soc. London, Ser. A
440
(
1908
),
163
188
(
1993
).
20.
Grabovsky
,
Y.
, “
An application of the general theory of exact relations to fiber-reinforced conducting composites with Hall effect
,”
Mech. Mater.
41
,
456
462
(
2009
).
21.
Grabovsky
,
Y.
, “
Exact relations for effective conductivity of fiber-reinforced conducting composites with the Hall effect via a general theory
,”
SIAM J. Math. Anal.
41
,
973
1024
(
2009
).
22.
Hall
,
E. H.
, “
On a new action of the magnet on electric currents
,”
Am. J. Math.
2
(
3
),
287
292
(
1879
).
23.
Hashin
,
Z.
and
Shtrikman
,
S.
, “
A variational approach to the theory of the effective magnetic permeability of multiphase materials
,”
J. Appl. Phys.
35
,
3125
3131
(
1962
).
24.
Milton
,
G. W.
, “
Classical Hall effect in two-dimensional composites: A characterization of the set of realizable effective conductivity tensors
,”
Phys. Rev. B
38
,
11296
11303
(
1988
).
25.
Milton
,
G. W.
, “
On characterizing the set of possible effective tensors of composites: The variational method and the translation method
,”
Commun. Pure Appl. Math.
43
,
63
125
(
1990
).
26.
Milton
,
G. W.
,
The Theory of Composites
(
Cambridge University Press
,
Cambridge, UK
,
2002
).
27.
Milton
,
G. W.
, “
Modelling the properties of composites by laminates
,” in
Homogenization and Effective Moduli of Materials and Media
(
Springer-Verlag
,
New York
,
1986
), IMA Vol. Math. Appl. 1, p.
150
174
.
28.
Murat
,
F.
,
H-convergence, mimeographed notes
,
Séminaire d’Analyse Fonctionnelle et Numérique
,
Université d’Alger
,
Algiers
,
1978
(in English in Ref. 28).
29.
Murat
,
F.
, and
Tartar
,
L.
, “
H-convergence
,” in
Topics in the Mathematical Modelling of Composite Materials, Progress in Nonlinear Differential Equations and their Applications
, Vol. 31, edited by
L.
Cherkaev
and
R. V.
Kohn
, (
Birkhaüser Boston
,
Boston
,
1997
), pp.
21
43
.
30.
Strelniker
,
Y. M.
and
Bergman
,
D. J.
, “
Exact relations between magnetoresistivity tensor components of conducting composites with a columnar microstructure
,”
Phys. Rev. B
61
,
6288
6297
(
2000
).
31.
Strom-Olsen
,
J. O.
,“
Longitudinal Magnetoresistance in Silver and Copper between 4.2 and 35 °K
,”
Proc. Roy. Soc. London, Ser. A
302
,
83
98
(
1967
).
32.
Stroud
,
D.
and
Bergman
,
D. J.
, “
New exact results for the Hall-coefficient and magnetoresistance of inhomogeneous two-dimensional metals
,”
Phys. Rev. B
30
,
447
449
(
1984
).
33.
Tartar
,
L.
,
Cours Peccot
(
Collège de France
,
Paris
,
1977
) (partly written in Refs. 29, 30, and 34).
34.
Tartar
,
L.
,
The General Theory of Homogenization: A Personalized Introduction
, Lecture Notes of the Unione Matematica Italiana (
Springer-Verlag
,
Berlin Heidelberg
,
2009
), p.
471
.
35.
Willis
,
J. R.
, “
Bounds and self-consistent estimates for the overall properties of anisotropic composites
,”
J. Mech. Phys. Solids
25
(
3
),
185
202
(
1977
).
You do not currently have access to this content.