We show that it is possible to generate an infinite set of solvable rational extensions from every exceptional first category translationally shape invariant potential. This is made by using Darboux-Bäcklund transformations based on unphysical regular Riccati-Schrödinger functions which are obtained from specific symmetries associated with the considered family of potentials.

1.
Adler
,
V. E.
, “
Nonlinear chains and Painlev é equations
,”
Physica D
73
335
351
(
1994
).
2.
Bagchi
,
B.
,
Quesne
,
C.
, and
Roychoudhury
,
R.
, “
Isospectrality of conventional and new extended potentials, second-order supersymmetry and role of
$\mathcal {PT}$
PT
symmetry
,”
Pramana, J. Phys.
73
337
347
(
2009
).
3.
Bagchi
,
B.
and
Quesne
,
C.
, “
An update on
$\mathcal {PT}$
PT
-symmetric complexified Scarf II potential, spectral singularities and some remarks on the rationally-extended supersymmetric partners
,”
J. Phys. A
43
305301
(
2010
).
4.
Bagrov
,
V. G.
and
Samsonov
,
B. F.
, “
Darboux transformation, factorization, and supersymmetry in one-dimensional quantum mechanics
,”
Theor. Math. Phys.
104
356
367
(
1995
).
5.
Cariñena
,
J. F.
,
Perelomov
,
A. M.
,
Rañada
,
M. F.
, and
Santader
,
M.
A quantum exactly solvable nonlinear oscillator related to the isotonic oscillator
,”
J. Phys. A
41
,
085301
(
2008
).
6.
Cariñena
,
J. F.
,
Ramos
,
A.
, and
Fernandez
,
D. J.
Group theoretical approach to the intertwined hamiltonians
,”
Ann. Phys.
292
,
42
66
(
2001
).
7.
Cariñena
,
J. F.
, and
Ramos
,
A.
, “
Integrability of Riccati equation from a group theoretical viewpoint
,”
Int. J. Mod. Phys. A
14
,
1935
1951
(
1999
).
8.
Cooper
,
F.
,
Khare
,
A.
, and
Sukhatme
,
U.
,
Supersymmetry in Quantum Mechanics
(
World Scientific
,
Singapore
,
2001
).
9.
Dutt
,
R.
,
Khare
,
A.
, and
Sukhatme
,
U. P.
, “
Supersymmetry, shape invariance and exactly solvable potentials
,”
Am. J. Phys.
56
,
163
168
(
1988
).
10.
Dutta
,
D.
, and
Roy
,
P.
, “
Conditionally exactly solvable potentials and exceptional orthogonal polynomials
,”
J. Math. Phys.
51
,
042101
(
2010
).
11.
Erdélyi
,
A.
,
Magnus
,
W.
,
Oberhettinger
,
F.
, and
Tricomi
,
F. G.
,
Higher Transcendental Functions
(
Mc Graw-Hill
,
New York
,
1953
).
12.
Fellows
,
J. M.
and
Smith
,
R. A.
, “
Factorization solution of a family of quantum nonlinear oscillators
,”
J. Phys. A
42
,
335303
(
2009
).
13.
Fernández
,
D. J.
,
Hussin
,
V.
, and
Mielnik
,
B.
, “
A simple generation of exactly solvable anharmonic oscillators
,”
Phys. Lett. A
244
,
309
316
(
1998
).
14.
Fernández
,
D. J.
and
Hussin
,
V.
, “
Higher-order SUSY, linearized nonlinear Heisenberg algebras and coherent states
,”
J. Phys. A
32
3603
3619
(
1999
).
15.
Gendenshtein
,
L.
, “
Derivation of exact spectra of the Schrödinger equation by means of supersymmetry
,”
JETP Lett.
38
,
356
359
(
1983
).
16.
Gómez-Ullate
,
D.
,
Kamran
,
N.
, and
Milson
,
R.
The Darboux transformation and algebraic deformations of shape invariant potentials
,”
J. Phys. A
37
,
1789
1804
(
2004
).
17.
Gómez-Ullate
,
D.
,
Kamran
,
N.
, and
Milson
,
R.
, “
Supersymmetry and algebraic Darboux transformations
,”
J. Phys. A
37
,
10065
10078
(
2004
).
18.
Gómez-Ullate
,
D.
,
Kamran
,
N.
, and
Milson
,
R.
, “
An extended class of orthogonal polynomials defined by a Sturm-Liouville problem
,”
J. Math. Anal. Appl.
359
,
352
(
2009
).
19.
Gómez-Ullate
,
D.
,
Kamran
,
N.
, and
Milson
,
R.
, “
An extension of Bochner's problem: exceptional invariant subspaces
,”
J. Approx. Theory
162
,
987
1006
(
2010
).
20.
Gómez-Ullate
,
D.
,
Kamran
,
N.
, and
Milson
,
R.
, “
Exceptional orthogonal polynomials and the Darboux transformation
,”
J. Phys. A
43
434016
(
2010
).
21.
Gómez-Ullate
,
D.
,
Kamran
,
N.
, and
Milson
,
R.
, “
On orthogonal polynomials spanning a non-standard flag
,” e-print arXiv:1101.5584.
22.
Grandati
,
Y.
, “
Solvable rational extensions of the isotonic oscillator
,”
Ann. Phys.
326
,
2074
2090
(
2011
).
23.
Grandati
,
Y.
and
Bérard
,
A.
, “
Solvable rational extension of translationally shape invariant potentials
,” e-print arXiv:0912.3061 (
2009
).
24.
Grandati
,
Y.
and
Bérard
,
A.
, “
Rational solutions for the Riccati-Schrödinger equations associated with translationally shape invariant potentials
,”
Ann. Phys.
325
,
1235
1259
(
2010
).
25.
Ho
,
C. -L.
,
Odake
,
S.
, and
Sasaki
,
R.
, “
Properties of the exceptional (Xl) Laguerre and Jacobi polynomials
,” e-print arXiv:0912.5477[math-ph].
26.
Junker
,
G.
and
Roy
,
P.
, “
Conditionally Exactly Solvable potentials: a supersymmetric construction method
,”
Ann. Phys.
270
,
155
177
(
1998
).
27.
Morse
,
P. M.
, “
Diatomic molecules according to the wave mechanics. II. Vibrational levels
,”
Phys. Rev.
34
,
57
64
(
1929
).
28.
Odake
,
S.
and
Sasaki
,
R.
, “
Infinitely many shape invariant potentials and new orthogonal polynomials
,”
Phys. Lett. B
679
,
414
417
(
2009
).
29.
Odake
,
S.
and
Sasaki
,
R.
, “
Another set of infinitely many exceptional (Xl) Laguerre polynomials
,”
Phys. Lett. B
684
,
173
176
(
2009
).
30.
Odake
,
S.
and
Sasaki
,
R.
, “
Infinitely many shape invariant potentials and cubic identities of the Laguerre and Jacobi polynomials
,”
J. Math. Phys.
51
,
053513
(
2010
).
31.
Plyushchay
,
M. S.
,
Arancibia
,
A.
, and
Nieto
,
L. M.
, “
Exotic supersymmetry of the kink-antikink crystal, and the infinite period limit
,”
Phys. Rev. D
83
,
065025
(
2011
).
32.
Plyushchay
,
M. S.
and
Nieto
,
L. M.
, “
Self-isospectrality, mirror symmetry, and exotic nonlinear supersymmetry
,”
Phys. Rev. D
82
,
065022
(
2010
).
33.
Quesne
,
C.
, “
Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry
,”
J. Phys. A
41
,
392001
(
2008
).
34.
Quesne
,
C.
, “
Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics
,”
Symmetry, Integr. Geom.: Methods Appl.
5
,
08424
(
2009
).
35.
Samsonov
,
B. F.
and
Ovcharov
,
I. N.
, “
Darboux transformation and exactly solvable potentials with quasi-equidistant spectrum
,”
Russ. Phys. J.
38
,
765
771
(
1995
).
36.
Samsonov
,
B. F.
, “
New possibilities for supersymmetry breakdown in quantum mechanics and second order irreducible Darboux transformations
,”
Phys. Lett. A
263
,
274
280
(
1999
).
37.
Shnol'
,
E. E.
, Appendix B in
S.
Dobov
,
V. M.
Eleonskii
and
N. E.
Kulagin
, “
Equidistant spectra of anharmonic oscillators
,”
Chaos
4
,
47
53
(
1994
).
38.
Sasaki
,
R.
,
Tsujimoto
,
S.
, and
Zhedanov
,
A.
, “
Exceptional Laguerre and Jacobi polynomials and the corresponding potentials through Darboux-Crum transformations
,”
J. Phys. A
43
315204
(
2010
).
39.
Sukumar
,
C. V.
, “
Supersymmetric quantum mechanics of one-dimensional systems
,”
J. Phys. A
18
,
2917
2936
(
1985
).
40.
Szegö
,
G.
,
Orthogonal polynomials
(
American Mathematical Society
,
Providence
,
1975
).
41.
Tkachuk
,
V. M.
, “
Supersymmetric method for constructing quasi-exactly and conditionally-exactly solvable potentials
,”
J. Phys. A
32
,
1291
1300
(
1999
).
You do not currently have access to this content.