We show that it is possible to generate an infinite set of solvable rational extensions from every exceptional first category translationally shape invariant potential. This is made by using Darboux-Bäcklund transformations based on unphysical regular Riccati-Schrödinger functions which are obtained from specific symmetries associated with the considered family of potentials.
REFERENCES
1.
Adler
, V. E.
, “Nonlinear chains and Painlev é equations
,” Physica D
73
335
–351
(1994
).2.
Bagchi
, B.
, Quesne
, C.
, and Roychoudhury
, R.
, “Isospectrality of conventional and new extended potentials, second-order supersymmetry and role of
,” $\mathcal {PT}$
symmetryPramana, J. Phys.
73
337
–347
(2009
).3.
Bagchi
, B.
and Quesne
, C.
, “An update on
,” $\mathcal {PT}$
-symmetric complexified Scarf II potential, spectral singularities and some remarks on the rationally-extended supersymmetric partnersJ. Phys. A
43
305301
(2010
).4.
Bagrov
, V. G.
and Samsonov
, B. F.
, “Darboux transformation, factorization, and supersymmetry in one-dimensional quantum mechanics
,” Theor. Math. Phys.
104
356
–367
(1995
).5.
Cariñena
, J. F.
, Perelomov
, A. M.
, Rañada
, M. F.
, and Santader
, M.
“A quantum exactly solvable nonlinear oscillator related to the isotonic oscillator
,” J. Phys. A
41
, 085301
(2008
).6.
Cariñena
, J. F.
, Ramos
, A.
, and Fernandez
, D. J.
“Group theoretical approach to the intertwined hamiltonians
,” Ann. Phys.
292
, 42
–66
(2001
).7.
Cariñena
, J. F.
, and Ramos
, A.
, “Integrability of Riccati equation from a group theoretical viewpoint
,” Int. J. Mod. Phys. A
14
, 1935
–1951
(1999
).8.
Cooper
, F.
, Khare
, A.
, and Sukhatme
, U.
, Supersymmetry in Quantum Mechanics
(World Scientific
, Singapore
, 2001
).9.
Dutt
, R.
, Khare
, A.
, and Sukhatme
, U. P.
, “Supersymmetry, shape invariance and exactly solvable potentials
,” Am. J. Phys.
56
, 163
–168
(1988
).10.
Dutta
, D.
, and Roy
, P.
, “Conditionally exactly solvable potentials and exceptional orthogonal polynomials
,” J. Math. Phys.
51
, 042101
(2010
).11.
Erdélyi
, A.
, Magnus
, W.
, Oberhettinger
, F.
, and Tricomi
, F. G.
, Higher Transcendental Functions
(Mc Graw-Hill
, New York
, 1953
).12.
Fellows
, J. M.
and Smith
, R. A.
, “Factorization solution of a family of quantum nonlinear oscillators
,” J. Phys. A
42
, 335303
(2009
).13.
Fernández
, D. J.
, Hussin
, V.
, and Mielnik
, B.
, “A simple generation of exactly solvable anharmonic oscillators
,” Phys. Lett. A
244
, 309
–316
(1998
).14.
Fernández
, D. J.
and Hussin
, V.
, “Higher-order SUSY, linearized nonlinear Heisenberg algebras and coherent states
,” J. Phys. A
32
3603
–3619
(1999
).15.
Gendenshtein
, L.
, “Derivation of exact spectra of the Schrödinger equation by means of supersymmetry
,” JETP Lett.
38
, 356
–359
(1983
).16.
Gómez-Ullate
, D.
, Kamran
, N.
, and Milson
, R.
“The Darboux transformation and algebraic deformations of shape invariant potentials
,” J. Phys. A
37
, 1789
–1804
(2004
).17.
Gómez-Ullate
, D.
, Kamran
, N.
, and Milson
, R.
, “Supersymmetry and algebraic Darboux transformations
,” J. Phys. A
37
, 10065
–10078
(2004
).18.
Gómez-Ullate
, D.
, Kamran
, N.
, and Milson
, R.
, “An extended class of orthogonal polynomials defined by a Sturm-Liouville problem
,” J. Math. Anal. Appl.
359
, 352
(2009
).19.
Gómez-Ullate
, D.
, Kamran
, N.
, and Milson
, R.
, “An extension of Bochner's problem: exceptional invariant subspaces
,” J. Approx. Theory
162
, 987
–1006
(2010
).20.
Gómez-Ullate
, D.
, Kamran
, N.
, and Milson
, R.
, “Exceptional orthogonal polynomials and the Darboux transformation
,” J. Phys. A
43
434016
(2010
).21.
Gómez-Ullate
, D.
, Kamran
, N.
, and Milson
, R.
, “On orthogonal polynomials spanning a non-standard flag
,” e-print arXiv:1101.5584.22.
Grandati
, Y.
, “Solvable rational extensions of the isotonic oscillator
,” Ann. Phys.
326
, 2074
–2090
(2011
).23.
Grandati
, Y.
and Bérard
, A.
, “Solvable rational extension of translationally shape invariant potentials
,” e-print arXiv:0912.3061 (2009
).24.
Grandati
, Y.
and Bérard
, A.
, “Rational solutions for the Riccati-Schrödinger equations associated with translationally shape invariant potentials
,” Ann. Phys.
325
, 1235
–1259
(2010
).25.
Ho
, C. -L.
, Odake
, S.
, and Sasaki
, R.
, “Properties of the exceptional (Xl) Laguerre and Jacobi polynomials
,” e-print arXiv:0912.5477[math-ph].26.
Junker
, G.
and Roy
, P.
, “Conditionally Exactly Solvable potentials: a supersymmetric construction method
,” Ann. Phys.
270
, 155
–177
(1998
).27.
Morse
, P. M.
, “Diatomic molecules according to the wave mechanics. II. Vibrational levels
,” Phys. Rev.
34
, 57
–64
(1929
).28.
Odake
, S.
and Sasaki
, R.
, “Infinitely many shape invariant potentials and new orthogonal polynomials
,” Phys. Lett. B
679
, 414
–417
(2009
).29.
Odake
, S.
and Sasaki
, R.
, “Another set of infinitely many exceptional (Xl) Laguerre polynomials
,” Phys. Lett. B
684
, 173
–176
(2009
).30.
Odake
, S.
and Sasaki
, R.
, “Infinitely many shape invariant potentials and cubic identities of the Laguerre and Jacobi polynomials
,” J. Math. Phys.
51
, 053513
(2010
).31.
Plyushchay
, M. S.
, Arancibia
, A.
, and Nieto
, L. M.
, “Exotic supersymmetry of the kink-antikink crystal, and the infinite period limit
,” Phys. Rev. D
83
, 065025
(2011
).32.
Plyushchay
, M. S.
and Nieto
, L. M.
, “Self-isospectrality, mirror symmetry, and exotic nonlinear supersymmetry
,” Phys. Rev. D
82
, 065022
(2010
).33.
Quesne
, C.
, “Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry
,” J. Phys. A
41
, 392001
(2008
).34.
Quesne
, C.
, “Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics
,” Symmetry, Integr. Geom.: Methods Appl.
5
, 08424
(2009
).35.
Samsonov
, B. F.
and Ovcharov
, I. N.
, “Darboux transformation and exactly solvable potentials with quasi-equidistant spectrum
,” Russ. Phys. J.
38
, 765
–771
(1995
).36.
Samsonov
, B. F.
, “New possibilities for supersymmetry breakdown in quantum mechanics and second order irreducible Darboux transformations
,” Phys. Lett. A
263
, 274
–280
(1999
). 37.
Shnol'
, E. E.
, Appendix B in S.
Dobov
, V. M.
Eleonskii
and N. E.
Kulagin
, “Equidistant spectra of anharmonic oscillators
,” Chaos
4
, 47
–53
(1994
).38.
Sasaki
, R.
, Tsujimoto
, S.
, and Zhedanov
, A.
, “Exceptional Laguerre and Jacobi polynomials and the corresponding potentials through Darboux-Crum transformations
,” J. Phys. A
43
315204
(2010
).39.
Sukumar
, C. V.
, “Supersymmetric quantum mechanics of one-dimensional systems
,” J. Phys. A
18
, 2917
–2936
(1985
).40.
41.
Tkachuk
, V. M.
, “Supersymmetric method for constructing quasi-exactly and conditionally-exactly solvable potentials
,” J. Phys. A
32
, 1291
–1300
(1999
).© 2011 American Institute of Physics.
2011
American Institute of Physics
You do not currently have access to this content.