The current early stage in the investigation of the stability of the Kerr metric is characterized by the study of appropriate model problems. Particularly interesting is the problem of the stability of the solutions of the Klein-Gordon equation, describing the propagation of a scalar field in the background of a rotating (Kerr-) black hole. Results suggest that the stability of the field depends crucially on its mass μ. Among others, the paper provides an improved bound for μ above which the solutions of the reduced, by separation in the azimuth angle in Boyer-Lindquist coordinates, Klein-Gordon equation are stable. Finally, it gives new formulations of the reduced equation, in particular, in form of a time-dependent wave equation that is governed by a family of unitarily equivalent positive self-adjoint operators. The latter formulation might turn out useful for further investigation. On the other hand, it is proved that from the abstract properties of this family alone it cannot be concluded that the corresponding solutions are stable.

1.
Alexakis
,
S.
,
Ionescu
,
A. D.
, and
Klainerman
,
S.
, “
Uniqueness of smooth stationary black holes in vacuum: Small perturbations of the Kerr spaces
,”
Commun. Math. Phys.
299
,
89
127
(
2009
).
2.
Andersson
,
L.
and
Blue
,
P.
, e-print arXiv:0908.2265v2.
3.
Beyer
,
H. R.
, “
On the stability of the Kerr metric
,”
Commun. Math. Phys.
221
,
659
676
(
2001
).
4.
Beyer
,
H. R.
, “
A framework for perturbations and stability of differentially rotating stars
,”
Proc. R. Soc. London
458
,
359
380
(
2002
).
5.
Beyer
,
H. R.
, “
Beyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equations
,”
Springer Lecture Notes in Mathematics 1898
(
Springer
,
Berlin
,
2007
).
6.
Beyer
,
H. R.
, “
A note on the Klein-Gordon equation in the background of a rotating black hole
,”
J. Math. Phys.
50
,
012502
(
2009
).
7.
Beyer
,
H. R.
and
Craciun
,
I.
, “
On a new symmetry of the solutions of the wave equation in the background of a Kerr black hole
,”
Class. Quantum Grav.
25
,
135014
(
2008
).
8.
Boyer
,
R. H.
and
Lindquist
,
R. W.
, “
Maximal analytic extension of the Kerr metric
,”
J. Math. Phys.
8
,
265
281
(
1967
).
9.
Cardoso
,
V.
,
Dias
,
O. J. C.
,
Lemos
,
J. P. S.
, and
Yoshida
,
S.
, “
Black-hole bomb and superradiant instabilities
,”
Phys. Rev. D
70
,
44039
(
2004
).
10.
Carter
,
B.
, “
Global structure of the Kerr family of gravitational fields
,”
Phys. Rev. D
174
,
1559
1571
(
1968
);
Carter
,
B.
, “
Hamilton-Jacobi and Schroedinger separable solutions of Einstein's equations
,”
Commun. Math. Phys.
10
,
280
310
(
1968
).
11.
Carter
,
B.
, “
Killing tensor quantum numbers and conserved currents in curved space
,”
Phys. Rev. D
16
,
3395
3414
(
1977
).
12.
Cohen
,
J. M.
and
Kegeles
,
L. S.
, “
Constructive procedure for perturbations of spacetimes
,”
Phys. Rev. D
19
,
1641
1664
(
1979
).
13.
Dafermos
,
M.
, and
Rodnianski
,
I.
, “
A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds
,”
Invent. Math.
185
,
467
559
(
2001
).
14.
Damour
,
T.
,
Deruelle
,
N.
, and
Ruffini
,
R.
, “
On quantum resonances in stationary geometries
,”
Lett. Nuovo Cimento
15
,
257
262
(
1976
).
15.
Detweiler
,
S. L.
, “
Klein-Gordon equation and rotating black holes
,”
Phys. Rev. D
22
,
2323
2326
(
1980
).
16.
Dolan
,
S. R.
, “
Instability of the massive Klein-Gordon field on the Kerr spacetime
,”
Phys. Rev. D
76
,
084001
(
2007
).
17.
Finster
,
F.
,
Kamran
,
N.
,
Smoller
,
J.
, and
Yau
,
S.-T.
, “
Decay of solutions of the wave equation in the Kerr geometry
,”
Commun. Math. Phys.
264
,
465
503
(
2006
).
18.
For the first, see, for instance, Ref. 5. For the second, see, for instance, chapter 2 of Ref. 29.
19.
Furuhashi
,
H.
and
Nambu
,
Y.
, “
Instability of massive scalar fields in Kerr-Newman spacetime
,”
Prog. Theor. Phys.
112
,
983
995
(
2004
).
20.
Hale
,
J.
,
Theory of Functional Differential Equations
(
Springer
,
New York
,
1977
).
21.
Hod
,
S.
and
Hod
,
O.
, “
Analytic treatment of the black-hole bomb
,”
Phys. Rev. D
81
,
061502
(
2010
).
22.
If not otherwise indicated, the symbols t, r, θ, φ denote coordinate projections whose domains will be obvious from the context. In addition, we assume the composition of maps, which includes addition, multiplication, and so forth, always to be maximally defined. For instance, the sum of two complex-valued maps is defined on the intersection of their domains. Finally, we use Planck units where the reduced Planck constant ℏ, the speed of light in vacuum c, and the gravitational constant γ, all have the numerical value 1.
23.
Kalnins
,
E. G.
,
Miller
,
W.
, and
Williams
,
G. C.
, “
Intrinsic characterization of the separation constant for spin one and gravitational perturbations in Kerr geometry
,”
Proc. R. Soc. London
452
,
997
1006
(
1996
).
24.
Kay
,
B. S.
and
Wald
,
R. M.
, “
Linear stability of Schwarzschild under perturbations which are non-vanishing on the bifurcation 2-sphere
,”
Class. Quantum Grav.
4
,
893
898
(
1987
).
25.
Konoplya
,
R. A.
and
Zhidenko
,
A.
, “
Stability and quasinormal modes of the massive scalar field around Kerr black holes
,”
Phys. Rev. D
73
,
124040
(
2006
).
26.
Krivan
,
W.
,
Laguna
,
P.
, and
Papadopoulos
,
P.
, “
Dynamics of scalar fields in the background of rotating black holes
,”
Phys. Rev. D
54
,
4728
4734
(
1996
).
27.
Krivan
,
W.
,
Laguna
,
P.
,
Papadopoulos
,
P.
, and
Andersson
,
N.
, “
Dynamics of perturbations of rotating black holes
,”
Phys. Rev. D
56
,
3395
3404
(
1997
).
28.
Moncrief
,
V.
, “
Gravitational perturbations of spherically symmetric systems. I. The exterior problem
,”
Ann. Phys. (N.Y.)
88
,
323
342
(
1974
).
29.
Morawetz
,
C. S.
,
Notes on Time Decay and Scattering for Some Hyperbolic Problems
,
CBMS-NSF Regional Conference Series in Applied Mathematics Vol. 19
(
Society for Industrial Mathematics
,
Philadelphia, Bristol, England
,
1975
).
30.
Note that the differentiability of u implies that
$\textrm {Ran} u^{\prime } \subset W^1_{A}$
Ran uWA1
.
31.
Press
,
W. H.
and
Teukolsky
,
S.
, “
Perturbations of a rotating black hole. II. Dynamical stability of the Ke rr metric
,”
Astrophys. J.
185
,
649
673
(
1973
).
32.
Reed
,
M.
and
Simon
,
B.
,
Methods of Mathematical Physics
(
Academic
,
New York
,
1981, 1975
), Vols. I and II.
33.
Regge
,
T.
and
Wheeler
,
J. A.
, “
Stability of a Schwarzschild singularity
,”
Phys. Rev.
108
,
1063
1069
(
1957
).
34.
Robinson
,
D. C.
, “
Uniqueness of the Kerr black hole
,”
Phys. Rev. Lett.
34
,
905
906
(
1975
).
35.
Strafuss
,
M. J.
and
Khanna
,
G.
, “
Massive scalar field instability in Kerr spacetime
,”
Phys. Rev. D
71
,
24034
(
2005
).
36.
Teukolsky
,
S. A.
, “
Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations
,”
Astrophys. J.
185
,
635
647
(
1973
).
37.
That is, if A is a densely-defined, linear, symmetric, and semibounded operator in some Hilbert space X and
$\gamma \in {\mathbb {R}}$
γR
, then the Friedrichs extension of A + γ, (A + γ)F, and the sum of the Friedrichs extension of A, AF, and γ coincide, (A + γ)F = AF + γ.
38.
Walker
,
M.
and
Penrose
,
R.
, “
On quadratic first integrals of the geodesic equations for type [22] spacetimes
,”
Commun. Math. Phys.
18
,
265
274
(
1970
).
39.
$W^1_{A}$
WA1
may be regarded as a generalized Sobolev space.
40.
Whiting
,
B. F.
, “
Mode stability of the Kerr black hole
,”
J. Math. Phys.
30
,
1301
1305
(
1989
).
41.
Zerilli
,
F. J.
, “
Tensor harmonics in canonical form for gravitational radiation and other applications
,”
J. Math. Phys.
11
,
2203
2208
(
1970
).
42.
Zouros
,
T. J. M.
and
Eardley
,
D. M.
, “
Instabilities of massive scalar perturbations of a rotating black hole
,”
Ann. Phys. (N. Y.)
118
,
139
155
(
1979
).
You do not currently have access to this content.