We first generalize a result by Bavula on the sl(2) cohomology to the osp(12) cohomology and then we entirely compute the cohomology for a natural class of osp(12) modules M. We study the restriction to the sl(2) cohomology of M and apply our results to the module M=Dλ,μ of differential operators on the superline acting on densities.

1.
Agrebaoui
,
B.
and
Ben Fraj
,
N.
, “
On the cohomology of the Lie superalgebra of contact vector fields on S11
,”
Bull. Soc. Math. France
72
,
365
(
2004
).
2.
Basdouri
,
I.
and
Ben Ammar
,
M.
, “
Cohomology of osp(12) acting on linear differential operators on the supercircle S11
,”
Lett. Math. Phys.
81
,
239
(
2007
).
3.
Bavula
,
V.
, “
Computation of H(sl(2),M) with coefficients in a simple sl(2)-module
,”
Funkc. Anal. Priloz.
26
,
57
(
1992
).
4.
Bavula
,
V.
and
van Oystaeyen
,
F.
, “
The simple modules of the Lie superalgebra osp(1;2)
,”
J. Pure Appl. Algebra
150
,
41
(
2000
).
5.
Ben Ammar
,
M.
and
Boujelbene
,
M.
, “
sl(2) trivial deformations of Vectp(R) modules of symbols
,”
Symmetry, Integr. Geom.: Methods Appl.
4
,
65
(
2008
).
6.
Cartan
,
H.
and
Eilenberg
,
S.
,
Homological Algebra
(
Princeton University Press
,
Princeton
,
1956
).
7.
Chevalley
,
C.
and
Eilenberg
,
S.
, “
Cohomology theory of Lie groups and Lie algebras
,”
Trans. Am. Math. Soc.
63
,
85
(
1948
).
8.
Conley
,
C. H.
, “
Conformal symbols and the action of contact vector fields over the superline
,”
J. Reine Angew. Math.
633
,
115
(
2009
).
9.
Fuchs
,
D. B.
and
Leites
,
D. A.
, “
Cohomology of Lie superalgebras
,”
C. R. Acad. Bulg. Sci.
37
,
1595
(
1984
).
10.
Fuchs
,
D. B.
,
Cohomology of Infinite Dimensional Lie Algebras
(
Consultants Bureau
,
New York
,
1986
).
11.
Gargoubi
,
H.
,
Mellouli
,
N.
, and
Ovsienko
,
V.
, “
Differential operators on supercircle: Conformally equivariant quantization and symbol calculus
,”
Lett. Math. Phys.
79
,
51
(
2007
).
12.
Hochschild
,
G.
and
Serre
,
J. -P.
, “
Cohomology of Lie algebra
,”
Ann. Math.
57
,
591
(
1953
).
13.
Kac
,
V. C.
, “
Lie superalgebras
,”
Adv. Math.
26
,
8
(
1977
).
14.
Kassel
,
C.
,
Quantum Groups
,
Graduate Texts in Mathematics
Vol.
155
(
Springer-Verlag
,
New York
,
1995
).
15.
Koszul
,
J. L.
, “
Homologie et cohomologie des algèbres de Lie
,”
Bull. Soc. Math. France
78
,
65
(
1950
).
16.
Leites
,
D. A.
, “
Cohomology of Lie superalgebras
,”
Funkc. Anal. Priloz.
9
,
75
(
1975
)
Leites
,
D. A.
, “[
Funct. Anal. Appl.
9
,
340
(
1975
)]
17.
Leites
,
D.
and
Serganova
,
V.
, in
Topological and Geometrical Methods in Field Theory
, edited by
J.
Mickelsson
and
O.
Pekonen
(
World Scientific
,
Singapore
,
1992
), p.
194
.
18.
Miller
,
W.
, Jr.
,
Lie Theory and Special Functions
,
Mathematics in Science and Engineering
Vol.
43
(
Academic
,
New York
,
1968
).
19.
Scheunert
,
M.
,
The Theory of Lie Superalgebras
,
Lecture Notes in Mathematics
Vol.
716
(
Springer-Verlag
,
Berlin
,
1979
).
You do not currently have access to this content.