We first generalize a result by Bavula on the cohomology to the cohomology and then we entirely compute the cohomology for a natural class of modules . We study the restriction to the cohomology of and apply our results to the module of differential operators on the superline acting on densities.
REFERENCES
1.
Agrebaoui
, B.
and Ben Fraj
, N.
, “On the cohomology of the Lie superalgebra of contact vector fields on
,” Bull. Soc. Math. France
72
, 365
(2004
).2.
Basdouri
, I.
and Ben Ammar
, M.
, “Cohomology of acting on linear differential operators on the supercircle
,” Lett. Math. Phys.
81
, 239
(2007
).3.
Bavula
, V.
, “Computation of with coefficients in a simple -module
,” Funkc. Anal. Priloz.
26
, 57
(1992
).4.
Bavula
, V.
and van Oystaeyen
, F.
, “The simple modules of the Lie superalgebra
,” J. Pure Appl. Algebra
150
, 41
(2000
).5.
Ben Ammar
, M.
and Boujelbene
, M.
, “sl(2) trivial deformations of modules of symbols
,” Symmetry, Integr. Geom.: Methods Appl.
4
, 65
(2008
).6.
Cartan
, H.
and Eilenberg
, S.
, Homological Algebra
(Princeton University Press
, Princeton
, 1956
).7.
Chevalley
, C.
and Eilenberg
, S.
, “Cohomology theory of Lie groups and Lie algebras
,” Trans. Am. Math. Soc.
63
, 85
(1948
).8.
Conley
, C. H.
, “Conformal symbols and the action of contact vector fields over the superline
,” J. Reine Angew. Math.
633
, 115
(2009
).9.
Fuchs
, D. B.
and Leites
, D. A.
, “Cohomology of Lie superalgebras
,” C. R. Acad. Bulg. Sci.
37
, 1595
(1984
).10.
Fuchs
, D. B.
, Cohomology of Infinite Dimensional Lie Algebras
(Consultants Bureau
, New York
, 1986
).11.
Gargoubi
, H.
, Mellouli
, N.
, and Ovsienko
, V.
, “Differential operators on supercircle: Conformally equivariant quantization and symbol calculus
,” Lett. Math. Phys.
79
, 51
(2007
).12.
Hochschild
, G.
and Serre
, J. -P.
, “Cohomology of Lie algebra
,” Ann. Math.
57
, 591
(1953
).13.
Kac
, V. C.
, “Lie superalgebras
,” Adv. Math.
26
, 8
(1977
).14.
Kassel
, C.
, Quantum Groups
, Graduate Texts in Mathematics
Vol. 155
(Springer-Verlag
, New York
, 1995
).15.
Koszul
, J. L.
, “Homologie et cohomologie des algèbres de Lie
,” Bull. Soc. Math. France
78
, 65
(1950
).16.
Leites
,D. A.
, “Cohomology of Lie superalgebras
,” Funkc. Anal. Priloz.
9
, 75
(1975
)Leites
, D. A.
, “[Funct. Anal. Appl.
9
, 340
(1975
)]17.
Leites
, D.
and Serganova
, V.
, in Topological and Geometrical Methods in Field Theory
, edited by J.
Mickelsson
and O.
Pekonen
(World Scientific
, Singapore
, 1992
), p. 194
.18.
Miller
, W.
, Jr., Lie Theory and Special Functions
, Mathematics in Science and Engineering
Vol. 43
(Academic
, New York
, 1968
).19.
Scheunert
, M.
, The Theory of Lie Superalgebras
, Lecture Notes in Mathematics
Vol. 716
(Springer-Verlag
, Berlin
, 1979
).© 2010 American Institute of Physics.
2010
American Institute of Physics
You do not currently have access to this content.