General probabilistic theories provide the most general mathematical framework for the theory of probability in an operationally natural manner and generalize classical and quantum theories. In this article, we study state discrimination problems in general probabilistic theories using a Bayesian strategy. After reformulation of the theories with mathematical rigor, we first prove that an optimal observable to discriminate any (finite) number of states always exists in the most general setting. Next, we revisit our recently proposed geometric approach for the problem and show that for two-state discrimination, this approach is indeed effective in arbitrary dimensional cases. Moreover, our method reveals an operational meaning of Gudder’s “intrinsic metric” by means of the optimal success probability, which turns out to be a generalization of the trace distance for quantum systems. As its by-product, an information disturbance theorem in general probabilistic theories is derived, generalizing its well known quantum version.

1.
Audenaert
,
K. M. R.
,
Nussbaum
,
M.
,
Szkola
,
A.
, and
Verstraete
,
F.
, “
Asymptotic error rates in quantum hypothesis testing
,”
Commun. Math. Phys.
279
,
251
(
2008
).
2.
Ban
,
M.
,
Kurokawa
,
K.
,
Momose
,
R.
, and
Hirota
,
O.
, “
Optimum measurements for discrimination among symmetric quantum states and parameter estimation
,”
Int. J. Theor. Phys.
36
,
1269
(
1997
).
3.
Barnum
,
H.
,
Barrett
,
J.
,
Leifer
,
M.
, and
Wilce
,
A.
, “
Generalized no-broadcasting theorem
,”
Phys. Rev. Lett.
99
,
240501
(
2007
).
4.
Barnum
,
H.
,
Caves
,
C. M.
,
Fuchs
,
C. A.
,
Jozsa
,
R.
, and
Schumacher
,
B.
, “
Noncommuting mixed states cannot be broadcast
,”
Phys. Rev. Lett.
76
,
2818
(
1996
).
5.
Barrett
,
J.
, “
Information processing in generalized probabilistic theories
,”
Phys. Rev. A
75
,
032304
(
2007
).
6.
Bourbaki
,
N.
,
Éléments de Mathématique, Topologie Générale 1–4
, 2nd ed. (
Masson
,
Paris
,
1990
).
7.
Busch
,
P.
and
Grabowski
,
M.
, “
Some remarks on effects, operations, and unsharp measurements
,”
Found. Phys. Lett.
2
,
331
(
1989
).
8.
D’Ariano
,
G. M.
, “
Probabilistic theories: What is special about quantum mechanics?
,” in
Philosophy of Quantum Information and Entanglement
, edited by
A.
Bokulich
, and
G.
Jaeger
(
Cambridge University Press
,
Cambridge
,
2010
) pp.
85
126
.
9.
Dieks
,
D.
, “
Communication by EPR devices
,”
Phys. Lett.
92
,
271
(
1982
).
10.
Fuchs
,
C. A.
, “
Distinguishability and accessible information in quantum theory
,” Ph.D. thesis,
University of New Mexico
,
1996
.
11.
Gudder
,
S. P.
,
Quantum Probability
(
Academic
,
New York
,
1988
).
12.
Gudder
,
S. P.
,
Stochastic Method in Quantum Mechanics
(
Dover
,
New York
,
1979
).
13.
Helstrom
,
C. W.
,
Quantum Detection and Estimation Theory
(
Academic
,
New York
,
1976
).
14.
Holevo
,
A. S.
,
Probabilistic and Statistical Aspects of Quantum Theory
(
Elsevier
,
Amsterdam
,
1982
).
15.
Ježek
,
M.
,
Řeháček
,
J.
, and
Fiurášek
,
J.
, “
Finding optimal strategies for minimum-error quantum-state discrimination
,”
Phys. Rev. A
65
,
060301
(
2002
).
16.
Kimura
,
G.
,
Miyadera
,
T.
, and
Imai
,
H.
, “
Optimal state discrimination in general probabilistic theories
,”
Phys. Rev. A
79
,
062306
(
2009
).
17.
Mackey
,
G. W.
,
Mathematical Foundations of Quantum Mechanics
(
Addison-Wesley
,
Massachusetts
,
1963
).
18.
Nielsen
,
M. A.
and
Chuang
,
I. L.
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
Cambridge
,
2000
).
19.
Ozawa
,
M.
, “
Optimal measurements for general quantum systems
,”
Rep. Math. Phys.
18
,
11
28
(
1980
).
20.
Rivest
,
R. L.
,
Shamir
,
A.
, and
Adleman
,
L. M.
, “
A method of obtaining digital signatures and public-key cryptosystems
,”
Commun. ACM
21
,
120
(
1978
).
21.
Schaefer
,
H. H.
and
Wolff
,
M. P.
,
Topological Vector Spaces
, 2nd ed., (
Springer-Verlag
,
Heidelberg
,
1999
).
22.
Shor
,
P. W.
, “
Algorithms for quantum computation: Discrete logarithms and factoring
,”
SIAM J. Comput.
26
,
1484
(
1997
).
23.
Wootters
,
W. K.
and
Zurek
,
W. H.
, “
A single quantum cannot be cloned
,”
Nature (London)
299
,
802
(
1982
).
24.
Yuen
,
H. P.
, “
Amplification of quantum states and noiseless photon amplifiers
,”
Phys. Lett. A
113
,
405
(
1986
).
25.
Yuen
,
H. P.
,
Kennedy
,
R. S.
, and
Lax
,
M.
, “
Optimum testing of multiple hypotheses in quantum detection theory
,”
IEEE Trans. Inf. Theory
21
,
125
(
1975
).
You do not currently have access to this content.