The paper studies the existence of the finite-dimensional global attractor and exponential attractor for the dynamical system associated with the Kirchhoff models arising in elasto-plastic flow uttdiv{|u|m1u}Δut+Δ2u+h(ut)+g(u)=f(x). By using the method of -trajectories and the operator technique, it proves that under subcritical case, 1m<N+2(N2)+, the above-mentioned dynamical system possesses in different phase spaces a finite-dimensional (weak) global attractor and a weak exponential attractor, respectively. For application, the fact shows that for the concerned elasto-plastic flow the permanent regime (global attractor) can be observed when the excitation starts from any bounded set in phase space, and the fractal dimension of the attractor, that is, the number of degree of freedom of the turbulent phenomenon and thus the level of complexity concerning the flow, is finite.

1.
Babin
,
A. V.
and
Vishik
,
M. I.
,
Attractors of Evolutionary Equations
(
North-Holland
,
Amsterdam
,
1992
).
2.
Chen
,
F. -X.
,
Guo
,
B. -L.
, and
Wang
,
P.
, “
Long time behavior of strongly damped nonlinear wave equations
,”
J. Differ. Equations
147
,
231
(
1998
).
3.
Chen
,
G. -W.
and
Yang
,
Z. -J.
, “
Existence and nonexistence of global solutions for a class of nonlinear wave equation
,”
Math. Methods Appl. Sci.
23
,
615
(
2000
).
4.
Chueshov
,
I.
and
Lasiecka
,
I.
, “
Existence, uniqueness of weak solutions and global attractors for a class of 2D Kirchhoff-Boussinesq models
,”
Discrete Contin. Dyn. Syst.
15
,
777
(
2006
).
5.
Chueshov
,
I.
and
Lasiecka
,
I.
, “
Attractors for second order evolution equations with a nonlinear damping
,”
J. Dyn. Differ. Equ.
16
,
469
(
2004
).
6.
Chueshov
,
I.
and
Lasiecka
,
I.
, “
Long-time dynamics of semilinear wave equation with nonlinear interior-boundary damping and sources of critical exponents
,”
Control Methods in PDE-Dynamical Systems
,
Contemporary Mathematics
Vol.
426
, (
American Mathematical Society
,
Providence, RI
,
2007
), pp.
153
192
.
7.
Chueshov
,
I.
and
Lasiecka
,
I.
, “
Long-time behavior of second order evolution equations with nonlinear damping
,”
Memoirs of AMS
Vol.
195
(
American Mathematical Society
,
Providence, RI
,
2008
), p.
912
.
8.
Dai
,
Z. -D.
and
Guo
,
B. -L.
, “
Exponential attractors of the strongly damped nonlinear wave equations
,”
Recent Advances in Differential Equations, Kunming, 1997
,
Pitman Research Notes in Mathematics Series
Vol.
386
(
Longman
,
Harlow
,
1998
), pp.
149
159
.
9.
Feireisl
,
E.
, “
Global attractors for semi-linear damped wave equations with supercritical exponent
,”
J. Differ. Equations
116
,
431
(
1995
).
10.
Ghidaglia
,
J. M.
and
Marzocchi
,
A.
, “
Longtime behavior of strongly damped wave equation, global attractors and their dimension
,”
SIAM J. Math. Anal.
22
,
879
(
1991
).
11.
Greenberg
,
J. M.
,
MacCamy
,
R. C.
, and
Mizel
,
V. J.
, “
On the existence, uniqueness and stability of solutions of the equation σ(ux)uxx+λuxtx=ρ0utt
,”
J. Math. Mech.
17
,
707
(
1968
).
12.
Guesmia
,
A.
, “
Existence globale et stabilisation interne non linéaire d’un système de Petrovsky
,”
Bull. Belg. Math. Soc.
5
,
583
(
1998
).
13.
Hale
,
J.
,
Asymptotic Behavior of Dissipative Systems
(
American Mathematical Society
,
Providence, RI
,
1988
).
14.
Kalantarov
,
V.
and
Zelik
,
S.
, “
Finite-dimensional attractors for the quasi-linear strongly-damped wave equation
,”
J. Differ. Equations
247
,
1120
(
2009
).
15.
Lagnese
,
J.
,
Boundary Stabilization of Thin Plates
(
SIAM
,
Philadelphia
,
1989
).
16.
Lagnese
,
J.
and
Lions
,
J. L.
, “
Modeling, analysis and control of thin plates
,”
Collection RMA
(
Masson
,
Paris
,
1988
).
17.
Lasiecka
,
I.
and
Ruzmaikina
,
A. A.
, “
Finite dimensionality and regularity of attractors for a 2-D semilinear wave equation with nonlinear dissipation
,”
J. Math. Anal. Appl.
270
,
16
(
2002
).
18.
Levandosky
,
S. P.
, “
Decay estimates for the fourth order wave equations
,”
J. Differ. Equations
143
,
360
(
1998
).
19.
Lianjun
,
A.
and
Pierce
,
A.
, “
A weakly nonlinear analysis of elasto-plastic-microstructure models
,”
SIAM J. Appl. Math.
55
,
136
(
1995
).
20.
Málek
,
J.
and
Pražák
,
D.
, “
Large time behavior via the method of -trajectories
,”
J. Differ. Equations
181
,
243
(
2002
).
21.
Massatt
,
P.
, “
Limiting behavior for strongly damped nonlinear wave equations
,”
J. Differ. Equations
48
,
334
(
1983
).
22.
Messaoudi
,
S. A.
, “
Global existence and nonexistence in a system of Petrovsky
,”
J. Math. Anal. Appl.
265
,
296
(
2002
).
23.
Temam
,
R.
,
Infinite Dimensional Dynamical Systems in Mechanics and Physics
(
Springer-Verlag
,
New York
,
1997
).
24.
Nakao
,
M.
and
Yang
,
Z. -J.
, “
Global attractors for some quasi-linear wave equations with a strong dissipation
,”
Adv. Math. Sci. Appl.
17
,
89
(
2007
).
25.
Pražák
,
D.
, “
On finite fractal dimension of the global attractor for the wave equation with nonlinear damping
,”
J. Dyn. Differ. Equ.
14
,
763
(
2002
).
26.
Pražák
,
D.
, “
A necessary and sufficient condition for the existence of an exponential attractor
,”
Cent. Eur. J. Math.
1
,
411
(
2003
).
27.
Varlamov
,
V. V.
, “
On the initial boundary value problem for the damped Boussinesq equation
,”
Discrete Contin. Dyn. Syst.
4
,
431
(
1998
).
28.
Xuing
,
J. -C.
,
Point Set Topology Lecture Notes
(
Higher Education
,
Beijing
,
1981
).
29.
Yang
,
Z. -J.
and
Chen
,
G. -W.
, “
Initial value problem for a nonlinear wave equation with damping term
,”
Acta Math. Appl. Sin.
23
,
45
(
2000
).
30.
Yang
,
Z. -J.
, “
Cauchy problem for quasi-linear wave equations with viscous damping
,”
J. Math. Anal. Appl.
320
,
859
(
2006
).
31.
Yang
,
Z. -J.
, “
Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equation with dissipative term
,”
J. Differ. Equations
187
,
520
(
2003
).
32.
Yang
,
Z. -J.
, “
Cauchy problem for a class of nonlinear dispersive wave equations arising in elasto-plastic flow
,”
J. Math. Anal. Appl.
313
,
197
(
2006
).
33.
Yang
,
Z. -J.
and
Guo
,
B. -L.
, “
Cauchy problem for the multi-dimensional Boussinesq type equation
,”
J. Math. Anal. Appl.
340
,
64
(
2008
).
34.
Yang
,
Z. -J.
and
Jin
,
B. -X.
, “
Global attractor for a class of Kirchhoff models
,”
J. Math. Phys.
50
,
032701
(
2009
).
35.
Yang
,
Z. -J.
, “
Longtime behavior for a nonlinear wave equation arising in elasto-plastic flow
,”
Math. Methods Appl. Sci.
32
,
1082
(
2009
).
36.
Yang
,
Z. -J.
, “
Global attractors and their Hausdorff dimensions for a class of Kirchhoff models
,”
J. Math. Phys.
51
,
032701
(
2010
).
37.
Zhenya
,
Y.
and
Hongqing
,
Z.
, “
Similarity reductions for a nonlinear wave equation with damping term
,”
Acta Phys. Sin.
49
,
2113
(
2000
).
38.
Zhenya
,
Y.
, “
Similarity reduction and integrability for the nonlinear wave equations from EPM model
,”
Commun. Theory Phys.
35
,
647
(
2001
).
39.
Zhou
,
S. -F.
, “
Dimensions of the global attractor for damped nonlinear wave equation
,”
Proc. AMS
127
,
3623
(
1999
).
You do not currently have access to this content.