We consider the problem of constructing Gardner’s deformations for the N=2 supersymmetric a=4-Korteweg–de Vries (SKdV) equation; such deformations yield recurrence relations between the super-Hamiltonians of the hierarchy. We prove the nonexistence of supersymmetry-invariant deformations that retract to Gardner’s formulas for the Korteweg-de Vries (KdV) with equation under the component reduction. At the same time, we propose a two-step scheme for the recursive production of the integrals of motion for the N=2, a=4-SKdV. First, we find a new Gardner’s deformation of the Kaup–Boussinesq equation, which is contained in the bosonic limit of the superhierarchy. This yields the recurrence relation between the Hamiltonians of the limit, whence we determine the bosonic super-Hamiltonians of the full N=2, a=4-SKdV hierarchy. Our method is applicable toward the solution of Gardner’s deformation problems for other supersymmetric KdV-type systems.

1.
R. M.
Miura
,
C. S.
Gardner
, and
M. D.
Kruskal
,
J. Math. Phys.
9
,
1204
(
1968
).
2.
P.
Mathieu
,
Bäcklund and Darboux Transformations. The Geometry of Solitons
,
CRM Proceedings Lecture Notes
Vol.
29
, edited by
A.
Coley
,
D.
Levi
,
R.
Milson
,
C.
Rogers
, and
P.
Winternitz
(
AMS
,
Providence, RI
,
2001
), p.
325
.
3.
C. A.
Laberge
and
P.
Mathieu
,
Phys. Lett. B
215
,
718
(
1988
).
4.
P.
Labelle
and
P.
Mathieu
,
J. Math. Phys.
32
,
923
(
1991
).
5.
B. A.
Kupershmidt
,
Proc. R. Ir. Acad., Sect. A
83
,
45
(
1983
).
6.
S.
Andrea
,
A.
Restuccia
, and
A.
Sotomayor
,
J. Math. Phys.
46
,
103517
(
2005
).
7.
A.
Karasu
and
A. V.
Kiselev
,
J. Phys. A
39
,
11453
(
2006
).
8.
A. V.
Kiselev
,
Theor. Math. Phys.
152
,
963
(
2007
).
9.
D. J.
Kaup
,
Prog. Theor. Phys.
54
,
396
(
1975
);
L. J. F.
Broer
,
Appl. Sci. Res.
31
,
377
(
1975
).
10.
Y.
Nutku
and
M. V.
Pavlov
,
J. Math. Phys.
43
,
1441
(
2002
).
11.
B. A.
Kupershmidt
,
Mech. Res. Commun.
13
,
47
(
1986
).
12.
J. C.
Brunelli
and
A.
Das
,
Phys. Lett. B
337
,
303
(
1994
);
Field Theory, Integrable Systems and Symmetries
, edited by
F.
Khanna
and
L.
Vinet
(
University of Montréal
,
Montréal, QC
,
1997
), Vol.
1
, p.
1
.
13.
S.
Palit
and
R. A.
Chowdhury
,
J. Phys. A
29
,
2853
(
1996
).
14.
P. J.
Olver
,
Applications of Lie Groups to Differential Equations
,
Graduate Texts in Mathematics
Vol.
107
, 2nd ed. (
Springer-Verlag
,
New York
,
1993
).
15.
A. V.
Kiselev
and
T.
Wolf
,
Symmetry, Integr. Geom.: Methods Appl.
2
, no.
30
,
1
(
2006
).
16.
A. V.
Kiselev
and
T.
Wolf
,
Comput. Phys. Commun.
177
,
315
(
2007
).
17.
18.
Likewise, we will extend Gardner’s deformation (14) of (4) to deformation (18) of two-component bosonic limit (13) for (3) with a=4. Hence we reproduce the conservation laws for (13) and, again, extend them to the bosonic super-Hamiltonians of full system (3).
19.
M.
Chaichian
and
P. P.
Kulish
,
Phys. Lett. B
183
,
169
(
1987
).
20.
S.
Bourque
and
P.
Mathieu
,
J. Math. Phys.
42
,
3517
(
2001
).
21.
P. H. M.
Kersten
and
A. S.
Sorin
,
Phys. Lett. A
300
,
397
(
2002
).
22.
The nonzero entries of the (4×4)-matrix representation P̂1 for the Hamiltonian superoperator P̂1a=4 are (P̂1)0,12=(P̂1)2,1=(P̂1)12,0=(P̂1)1,2=d/dx.
23.
24.
L.
Degiovanni
,
F.
Magri
, and
V.
Sciacca
,
Commun. Math. Phys.
253
,
1
(
2005
).
25.
Y.
Kosmann-Schwarzbach
and
F.
Magri
,
Ann. Inst. Henri Poincare, Sect. A
53
,
35
(
1990
).
26.
V. A.
Golovko
,
I. S.
Krasil’shchik
, and
A. M.
Verbovetskiĭ
,
Theor. Math. Phys.
154
,
227
(
2008
).
27.
28.
L.
Bonora
,
S.
Krivonos
, and
A.
Sorin
,
Nucl. Phys. B
477
,
835
(
1996
).
29.
S.
Krivonos
,
A.
Sorin
, and
F.
Toppan
,
Phys. Lett. A
206
,
146
(
1995
).
30.
We recall that the N=2 super-residue SresM of a superpseudodifferential operator M is the coefficient of D1D2(d/dx)1 in M.
31.
A. V.
Kiselev
and
V.
Hussin
,
Theor. Math. Phys.
159
,
833
(
2009
).
32.
P.
Kersten
and
J.
Krasil’shchik
,
Adv. Stud. Pure Math.
37
,
151
(
2002
).
33.
Under the assumption of weight homogeneity, the freedom in the choice of such f[u0,u12] is decreased, but the gap still remains.
34.
Still, the four components of the original N=2 supersymmetric equations within the hierarchy of (3) are written in the form of conserved currents. A helpful counterexample, Gardner’s extension of the N=1 super-KdV equation, is discussed in Refs. 4 and 41.
35.
This estimate is rough and can be improved by operating separately with the components of mϵ and E(ϵ) since, in particular, Kaup–Boussinesq system (11) is linear in u12.
36.
Reductions other than (2) can produce quadratic-nonlinear subsystems of the cubic-nonlinear system (3), e.g., if one sets u0=0 and u2=0, see (25).
37.
T.
Wolf
(
2005
,
2009
) The interactive use of SSTOOLS. Online tutorial: http://lie.math.brocku.ca/crack/susy/.
38.
There is one more possibility to reduce the size of the algebraic system: this can be achieved by a thorough balance of the differential orders of mϵ and E(ϵ).
39.
T.
Wolf
,
CRM Proc. Lecture Notes
37
,
283
(
2004
).
40.
Surprisingly, quadratic approximation (14a) in the deformation problem for (7) is very restrictive and leads to a unique solution (16a), (16b), (17a), (17b), (18a), and (18b) for (13). Relaxing this constraint and thus permitting the coefficient of ϵ2ũ122 in mϵ be arbitrary, we obtain two other real and two pairs of complex conjugate solutions for the deformation problem. They constitute the real and the complex orbit, respectively, under the action of the discrete symmetry u0u0, ξξ of (11).
41.
P.
Mathieu
,
J. Math. Phys.
29
,
2499
(
1988
).
You do not currently have access to this content.