The Poisson structure on CN×RN is introduced to give the Hamiltonian system associated with a spectral problem which yields the nonlinear Schrödinger (NLS) hierarchy. The Hamiltonian system is proven to be Liouville integrable. Some (2+1)-dimensional equations including NLS equation, Kadomtesev–Petviashvili I (KPI) equation, coupled KPI equation, and modified Kadomtesev–Petviashvili (mKP) equation, are decomposed into Hamilton flows via the NLS hierarchy. The algebraic curve, Abel–Jacobi coordinates, and Riemann–Jacobi inversion are used to obtain the algebrogeometric solutions of these equations.

1.
V. E.
Zakharov
and
A. B.
Shabat
,
J. Exp. Theor. Phys.
34
,
62
(
1972
).
2.
V. E.
Zakharov
and
A. B.
Shabat
,
J. Exp. Theor. Phys.
37
,
823
(
1973
).
3.
J. J. C.
Nimmo
,
Inverse Probl.
8
,
219
(
1992
).
4.
A.
Tuncay
,
D.
Francesco
, and
M.
Cornelis
,
Inverse Probl.
23
,
2171
(
2007
).
5.
D. E.
Rourke
and
P. G.
Morris
,
Phys. Rev. A
46
,
3631
(
1992
).
6.
M. J.
Ablowitz
and
P. A.
Clarkson
,
Solitons, Nonlinear Evolution Equations and Inverse Scattering
(
Cambridge University Press
,
Cambridge
,
1991
).
7.
B. G.
Konopelchenko
,
Solitons in Multidimensions, Inverse Spectral Transform Method
(
World Scientific
,
Singapore
,
1993
).
8.
S. P.
Novikov
,
S. V.
Manakov
,
L. P.
Pitaevskii
, and
V. E.
Zakharov
,
Theory of Solitons, The Inverse Scattering Methods
(
Consultants Bureau
,
New York
,
1984
).
9.
Y.
Matsuno
,
Bilinear Transformation Method
(
Academic
,
New York
,
1984
).
10.
V. B.
Matveev
and
M. A.
Salle
,
Darboux Transformations and Solitons
(
Springer
,
Berlin
,
1991
).
11.
E. D.
Belokolos
,
A. I.
Bobenko
,
V. Z.
Enolskii
,
A. R.
Its
, and
V. B.
Matveev
,
Algebro-Geometric Approach to Nonlinear Integrable Equations
(
Springer
,
Berlin
,
1994
.
12.
J.
Satsuma
,
J. Phys. Soc. Jpn.
40
,
286
(
1976
).
13.
Y.
Cheng
and
Y. S.
Li
,
Phys. Lett. A
157
,
22
(
1991
).
14.
B. G.
Konopelchenko
,
J.
Sidorenko
, and
W.
Strampp
,
Phys. Lett. A
157
,
17
(
1991
).
15.
C. W.
Cao
,
Y. T.
Wu
, and
X. G.
Geng
,
J. Math. Phys.
40
,
3948
(
1999
).
16.
C. W.
Cao
,
X. G.
Geng
, and
Y. T.
Wu
,
J. Phys. A
32
,
8059
(
1999
).
17.
C. W.
Cao
and
X.
Yang
,
J. Phys. A: Math. Theor.
41
,
025203
(
2008
).
19.
Z. J.
Qiao
,
J. Math. Phys.
36
,
3535
(
1995
).
20.
E. G.
Fan
,
J. Math. Phys.
41
,
7769
(
2000
).
21.
W. X.
Ma
and
Z. X.
Zhou
,
J. Math. Phys.
42
,
4345
(
2001
).
22.
D. L.
Du
and
C. W.
Cao
,
Phys. Lett. A
278
,
209
(
2001
).
24.
C. L.
Siegel
,
Topics in Complex Function Theory
(
Wiley
,
New York
,
1971
), Vol.
2
.
25.
P.
Griffiths
and
J.
Harris
,
Principles of Algebraic Geometry
(
Wiley
,
New York
,
1999
).
You do not currently have access to this content.