The notion of spherically symmetric superfunctions as functions invariant under the orthosymplectic group is introduced. This leads to dimensional reduction theorems for differentiation and integration in superspace. These spherically symmetric functions can be used to solve orthosymplectically invariant Schrödinger equations in superspace, such as the (an)harmonic oscillator or the Kepler problem. Finally, the obtained machinery is used to prove the Funk–Hecke theorem and Bochner’s relations in superspace.

1.
Aronszajn
,
N.
,
Creese
,
T.
, and
Lipkin
,
L.
,
Polyharmonic Functions
,
Oxford Mathematical Monographs
(
Clarendon Press
,
Oxford
/
Oxford University Press
,
New York
,
1983
).
2.
Berezin
,
F.
,
Introduction to Algebra and Analysis with Anticommuting Variables
(
Moscow Univ. Press
,
Moscow
,
1983
).
3.
Bernstein
,
I. N.
and
Leites
,
D. A.
, “
Integral forms and the Stokes formula on supermanifolds (Russian)
,”
Funkc. Anal. Priloz.
11
,
55
(
1977
).
4.
Coulembier
,
K.
,
De Bie
,
H.
, and
Sommen
,
F.
, “
Integration in superspace using distribution theory
,”
J. Phys. A: Math. Theor.
42
,
395206
(
2009
).
5.
Coulembier
,
K.
,
De Bie
,
H.
, and
Sommen
,
F.
, “
Orthogonality of Hermite polynomials in superspace and Mehler type formulae
,” e-print arXiv:1002.1118.
6.
De Bie
,
H.
, “
Fourier transform and related integral transforms in superspace
,”
J. Math. Anal. Appl.
345
,
147
(
2008
).
7.
De Bie
,
H.
, “
Schrödinger equation with delta potential in superspace
,”
Phys. Lett. A
372
,
4350
(
2008
).
8.
De Bie
,
H.
,
Eelbode
,
D.
, and
Sommen
,
F.
, “
Spherical harmonics and integration in superspace II
,”
J. Phys. A: Math. Theor.
42
,
245204
(
2009
).
9.
De Bie
,
H.
and
Sommen
,
F.
, “
Hermite and Gegenbauer polynomials in superspace using Clifford analysis
,”
J. Phys. A: Math. Theor.
40
,
10441
(
2007
).
10.
De Bie
,
H.
and
Sommen
,
F.
, “
Spherical harmonics and integration in superspace
,”
J. Phys. A: Math. Theor.
40
,
7193
(
2007
).
11.
De Bie
,
H.
and
Sommen
,
F.
, “
Fundamental solutions for the super Laplace and Dirac operators and all their natural powers
,”
J. Math. Anal. Appl.
338
,
1320
(
2008
).
12.
De Bie
,
H.
and
Sommen
,
F.
, “
A Cauchy integral formula in superspace
,”
Bull. London Math. Soc.
41
,
709
(
2009
).
13.
Delbourgo
,
R.
,
Jones
,
L. M.
, and
White
,
M.
, “
Anharmonic Grassmann oscillator
,”
Phys. Rev. D
40
,
2716
(
1989
).
14.
Desrosiers
,
P.
,
Lapointe
,
L.
, and
Mathieu
,
P.
, “
Generalized Hermite polynomials in superspace as eigenfunctions of the supersymmetric rational CMS model
,”
Nucl. Phys. B
674
,
615
(
2003
).
15.
Dunne
,
G. V.
and
Halliday
,
I. G.
, “
Negative-dimensional oscillators
,”
Nucl. Phys. B
308
,
589
(
1988
).
16.
Erdélyi
,
A.
,
Magnus
,
W.
,
Oberhettinger
,
F.
, and
Tricomi
,
F. G.
,
Higher Transcendental Functions
(
McGraw-Hill
,
New York
,
1953
), Vol.
2
.
17.
Frappat
,
L.
,
Sciarrino
,
A.
, and
Sorba
,
P.
,
Dictionary on Lie Algebras and Superalgebras
(
Academic
,
San Diego, CA
,
2000
).
18.
Hochstadt
,
H.
,
Pure and Applied Mathematics
(
Wiley-Interscience
,
New York
,
1971
), Vol.
XXIII
.
19.
Howe
,
R.
and
Tan
,
E. -C.
,
Nonabelian Harmonic Analysis
(
Springer-Verlag
,
New York
,
1992
).
20.
Jarvis
,
P. D.
and
Green
,
H. S.
, “
Casimir invariants and characteristic identities for generators of the general linear, special linear and orthosymplectic graded Lie algebras
,”
J. Math. Phys.
20
,
2115
(
1979
).
21.
Kieburg
,
M.
,
Kohler
,
H.
, and
Guhr
,
T.
, “
Integration of Grassmann variables over invariant functions on flat superspaces
,”
J. Math. Phys.
50
,
013528
(
2009
).
22.
Palamodov
,
V. P.
, “
Cogitations over Berezin’s integral
,”
Am. Math. Soc. Transl.
175
,
177
(
1996
).
23.
Zhang
,
R. B.
, “
Orthosymplectic Lie superalgebras in superspace analogues of quantum Kepler problems
,”
Commun. Math. Phys.
280
,
545
(
2008
).
You do not currently have access to this content.