The notion of spherically symmetric superfunctions as functions invariant under the orthosymplectic group is introduced. This leads to dimensional reduction theorems for differentiation and integration in superspace. These spherically symmetric functions can be used to solve orthosymplectically invariant Schrödinger equations in superspace, such as the (an)harmonic oscillator or the Kepler problem. Finally, the obtained machinery is used to prove the Funk–Hecke theorem and Bochner’s relations in superspace.
REFERENCES
1.
Aronszajn
, N.
, Creese
, T.
, and Lipkin
, L.
, Polyharmonic Functions
, Oxford Mathematical Monographs
(Clarendon Press
, Oxford
/Oxford University Press
, New York
, 1983
).2.
Berezin
, F.
, Introduction to Algebra and Analysis with Anticommuting Variables
(Moscow Univ. Press
, Moscow
, 1983
).3.
Bernstein
, I. N.
and Leites
, D. A.
, “Integral forms and the Stokes formula on supermanifolds (Russian)
,” Funkc. Anal. Priloz.
11
, 55
(1977
).4.
Coulembier
, K.
, De Bie
, H.
, and Sommen
, F.
, “Integration in superspace using distribution theory
,” J. Phys. A: Math. Theor.
42
, 395206
(2009
).5.
Coulembier
, K.
, De Bie
, H.
, and Sommen
, F.
, “Orthogonality of Hermite polynomials in superspace and Mehler type formulae
,” e-print arXiv:1002.1118.6.
De Bie
, H.
, “Fourier transform and related integral transforms in superspace
,” J. Math. Anal. Appl.
345
, 147
(2008
).7.
De Bie
, H.
, “Schrödinger equation with delta potential in superspace
,” Phys. Lett. A
372
, 4350
(2008
).8.
De Bie
, H.
, Eelbode
, D.
, and Sommen
, F.
, “Spherical harmonics and integration in superspace II
,” J. Phys. A: Math. Theor.
42
, 245204
(2009
).9.
De Bie
, H.
and Sommen
, F.
, “Hermite and Gegenbauer polynomials in superspace using Clifford analysis
,” J. Phys. A: Math. Theor.
40
, 10441
(2007
).10.
De Bie
, H.
and Sommen
, F.
, “Spherical harmonics and integration in superspace
,” J. Phys. A: Math. Theor.
40
, 7193
(2007
).11.
De Bie
, H.
and Sommen
, F.
, “Fundamental solutions for the super Laplace and Dirac operators and all their natural powers
,” J. Math. Anal. Appl.
338
, 1320
(2008
).12.
De Bie
, H.
and Sommen
, F.
, “A Cauchy integral formula in superspace
,” Bull. London Math. Soc.
41
, 709
(2009
).13.
Delbourgo
, R.
, Jones
, L. M.
, and White
, M.
, “Anharmonic Grassmann oscillator
,” Phys. Rev. D
40
, 2716
(1989
).14.
Desrosiers
, P.
, Lapointe
, L.
, and Mathieu
, P.
, “Generalized Hermite polynomials in superspace as eigenfunctions of the supersymmetric rational CMS model
,” Nucl. Phys. B
674
, 615
(2003
).15.
Dunne
, G. V.
and Halliday
, I. G.
, “Negative-dimensional oscillators
,” Nucl. Phys. B
308
, 589
(1988
).16.
Erdélyi
, A.
, Magnus
, W.
, Oberhettinger
, F.
, and Tricomi
, F. G.
, Higher Transcendental Functions
(McGraw-Hill
, New York
, 1953
), Vol. 2
.17.
Frappat
, L.
, Sciarrino
, A.
, and Sorba
, P.
, Dictionary on Lie Algebras and Superalgebras
(Academic
, San Diego, CA
, 2000
).18.
Hochstadt
, H.
, Pure and Applied Mathematics
(Wiley-Interscience
, New York
, 1971
), Vol. XXIII
.19.
Howe
, R.
and Tan
, E. -C.
, Nonabelian Harmonic Analysis
(Springer-Verlag
, New York
, 1992
).20.
Jarvis
, P. D.
and Green
, H. S.
, “Casimir invariants and characteristic identities for generators of the general linear, special linear and orthosymplectic graded Lie algebras
,” J. Math. Phys.
20
, 2115
(1979
).21.
Kieburg
, M.
, Kohler
, H.
, and Guhr
, T.
, “Integration of Grassmann variables over invariant functions on flat superspaces
,” J. Math. Phys.
50
, 013528
(2009
).22.
Palamodov
, V. P.
, “Cogitations over Berezin’s integral
,” Am. Math. Soc. Transl.
175
, 177
(1996
).23.
Zhang
, R. B.
, “Orthosymplectic Lie superalgebras in superspace analogues of quantum Kepler problems
,” Commun. Math. Phys.
280
, 545
(2008
).© 2010 American Institute of Physics.
2010
American Institute of Physics
You do not currently have access to this content.