The fermionic second quantization operator dΓ(B) is shown to be bounded by a power Ns/2 of the number operator N given that the operator B belongs to the rth von Neumann–Schatten class, s=2(r1)/r. Conversely, number operator estimates for dΓ(B) imply von Neumann–Schatten conditions on B. Quadratic creation and annihilation operators are treated as well.

1.
Bakić
,
D.
and
Guljaš
,
B.
, “
Which operators approximately annihilate orthonormal bases?
Acta Sci. Math.
64
,
601
(
1998
).
2.
Bhagwat
,
K. V.
and
Subramanian
,
R.
, “
Inequalities between means of positive operators
,”
Math. Proc. Cambridge Philos. Soc.
83
,
393
(
1978
).
3.
Carey
,
A. L.
and
Ruijsenaars
,
S. N. M.
, “
On fermion gauge groups, current algebras and Kac-Moody algebras
,”
Acta Appl. Math.
10
,
1
(
1987
).
4.
Favorov
,
S. Yu.
, “
Zero sets of entire functions of exponential type with additional conditions on the real line
,”
Algebra Anal.
20
,
138
(
2008
).
5.
Grosse
,
H.
and
Langmann
,
E.
, “
A superversion of quasifree second quantization. I. Charged particles
,”
J. Math. Phys.
33
,
1032
(
1992
).
6.
Mond
,
B.
and
Pečarić
,
J. E.
, “
Remarks on Jensen’s inequality for operator convex functions
,”
Ann. Univ. Mariae Curie-Skłodowska Sect. A
47
,
96
(
1993
).
7.
Ottesen
,
J. T.
, “
Infinite-dimensional groups and algebras in quantum physics
,”
Lect. Notes Phys.
27
,
8
(
1995
).
8.
Robinson
,
P. L.
, “
Fermionic Gaussians
,”
Math. Proc. Cambridge Philos. Soc.
118
,
543
(
1995
).
9.
Vasudeva
,
H. L.
and
Singh
Mandeep
, “
Weighted power means of operators
,”
Rend. Semin. Mat. Torino
66
,
131
(
2008
).
You do not currently have access to this content.