In this paper, it is discovered that the statistical property of the consensus and synchronization of the small-world networks, that is, the Cheeger constant, is a major determinant to measure the convergence rate of the consensus and synchronization of the small-world networks. Further, we give a mathematical rigorous estimation of the lower bound for the algebraic connectivity of the small-world networks, which is much larger than the algebraic connectivity of the regular circle. This result explains why the consensus problems on the small-world network have an ultrafast convergence rate and how much it can be improved. Moreover, it also characterizes quantitatively what kind of the small-world networks can be synchronized.

1.
Atay
,
F. M.
,
Biyikoglu
,
T.
, and
Jost
,
J.
, “
Network synchronization: Spectral versus statistical properties
,”
Physica D
224
,
35
(
2006
).
2.
Atay
,
F. M.
,
Jost
,
J.
, and
Wende
,
A.
, “
Delays, connection topology, and synchronization of coupled chaotic maps
,”
Phys. Rev. Lett.
92
,
144101
(
2004
).
3.
Barahona
,
M.
and
Pecora
,
L. M.
, “
Synchronization in small-world systems
,”
Phys. Rev. Lett.
89
,
054101
(
2002
).
4.
Berman
,
A.
and
Zhang
,
X. D.
, “
Lower bounds for the eigenvalues of Laplacian matrices
,”
Linear Algebra and Its Applications
316
,
13
(
2000
).
5.
Bollobás
,
B.
,
Random Graphs
, 2nd ed. (
Cambridge University
,
Cambridge, England
,
2001
).
6.
Chung
,
F.
,
Spectral Graph Theory
(
AMS
,
Providence, Rhode Island
,
1997
).
7.
Chung
,
F.
and
Lu
,
L. Y.
,
Complex Graphs and Networks
(
AMS
,
Providence, Rhode Island
,
2006
).
8.
Comellas
,
F.
and
Gago
,
S.
,
J. Phys. A
40
,
4483
(
2007
).
9.
Davis
,
P. J.
,
Circulant Matrices
(
Wiley
,
New York
,
1979
).
10.
de Abreu
,
N. M. M.
, “
Old and new results on algebraic connectivity of graphs
,”
Linear Algebra and Its Applications
423
,
53
(
2007
).
11.
Durrett
,
R.
,
Random Graph Dynamics
(
Cambridge University
,
Cambridge, U. K.
,
2006
).
12.
Erdös
,
P.
and
Rényi
,
A.
, “
On the evolution of random graphs
,”
Publ. Math. Inst. Hungarian Academy of Sciences
5
,
17
(
1960
).
13.
Fan
,
J.
and
Wang
,
X. F.
, “
On synchronization in scale-free dynamical networks
,”
Physica A
349
,
443
(
2005
).
14.
Fan
,
J.
and
Wang
,
X. F.
, “
On synchronous preference of complex dynamical networks
,”
Physica A
355
,
657
(
2005
).
15.
Fax
,
J. A.
and
Murray
,
R. M.
, “
Information flow and cooperative control of vehicle formations
,”
IEEE Trans. Autom. Control
49
,
1465
(
2004
).
16.
Fiedler
,
M.
, “
Algebra connectivity of graphs
,”
Czech. Math. J.
23
,
298
(
1973
).
17.
Fiedler
,
M.
, “
A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory
,”
Czech. Math. J.
25
,
607
(
1975
).
18.
Fink
,
K. S.
,
Johnson
,
G.
,
Carroll
,
T.
,
Mar
,
D.
, and
Pecora
,
L. M.
, “
Three coupled oscillators as a universal probe of synchronization stability in coupled oscillator arrays
,”
Phys. Rev. E
61
,
5080
(
2000
).
19.
Gade
,
P. M.
and
Hu
,
C. K.
, “
Synchronous chaos in coupled map with small-world interactions
,”
Phys. Rev. E
62
,
6409
(
2000
).
20.
Gauthier
,
D. J.
and
Bienfang
,
J. C.
, “
Intermittent loss of synchronization in coupled chaotic oscillators: Toward a new criterion for high-quality synchronization
,”
Phys. Rev. Lett.
77
,
1751
(
1996
).
21.
Godsil
,
C.
and
Royle
,
G.
,
Algebraic Graph Theory
(
Springer-Verlag
,
New York
,
2001
).
22.
Heagy
,
J. F.
,
Carroll
,
T. L.
, and
Pecora
,
L. M.
, “
Synchronous chaos in coupled oscillator systems
,”
Phys. Rev. E
50
,
1874
(
1994
).
23.
Heagy
,
J. F.
,
Pecora
,
L. M.
, and
Carroll
,
T. L.
, “
Short wavelength bifurcations and size instabilities in coupled oscillator systems
,”
Phys. Rev. Lett.
74
,
4185
(
1995
).
24.
Hong
,
H.
,
Choi
,
M. Y.
, and
Kim
,
B. J.
, “
Synchronization on small-world networks
,”
Phys. Rev. E
65
,
026139
(
2002
).
25.
Hovareshti
,
P.
and
Baras
,
J. S.
, “
Consensus problems on the small world graphs: A structural study
,”
2006 International Conference on Complex Systems
, Boston, Massachusetts, May 28–31,
2006
, http://www.ece.umd.edu/~baras/publications/papers/2006/06–11.pdf
26.
Jadbabaie
,
A.
,
Lin
,
J.
, and
Morse
,
A. D.
, “
Coordination of groups of mobile autonomous agents using nearest neighbor rules
,”
IEEE Trans. Autom. Control
48
,
988
(
2003
).
27.
Kowalski
,
J. M.
,
Albert
,
G. L.
, and
Gross
,
G. W.
, “
Asymptotically synchronous orbits in systems of excitable elements
,”
Phys. Rev. A
42
,
6260
(
1990
).
28.
Kuramoto
,
Y.
, “
Cooperative dynamics of oscillator community—A study based on lattice of rings
,” in
International Symposium on Mathematical Problems in Theoretical Physics
,
Lecture Notes in Physics
Vol.
39
, edited by
H.
Araki
(
Springer
,
Berlin
,
1975
), p.
1
.
29.
Lago-Fernández
,
L. F.
,
Huerta
,
R.
,
Corbacho
,
F.
, and
Sigüenza
,
J. A.
, “
Fast response and temporal coherent oscillations in small-world networks
,”
Phys. Rev. Lett.
84
,
2758
(
2000
).
30.
Li
,
C.
and
Chen
,
G.
, “
Phase synchronization in small-world networks of chaotic oscillators
,”
Physica A
341
,
73
(
2004
).
31.
Li
,
C.
and
Chen
,
G.
, “
Synchronization in general complex dynamical networks with coupling delays
,”
Physica A
343
,
263
(
2004
).
32.
Merris
,
R.
, “
A survey of graph Laplacians
,”
Linear Multilinear Algebra
39
,
19
(
1995
).
33.
Merris
,
R.
, “
Laplacian matrices of graphs: A survey
,”
Linear Algebra and Its Applications
197–198
,
143
(
1994
).
34.
Mohar
,
B.
, “
Isoperimetric numbers of graphs
,”
J. Comb. Theory, Ser. B
47
,
274
(
1989
).
35.
Mohar
,
B
., “
Some applications of Laplace eigenvalues of graphs
,” in
Graph Symmetry
, edited by
Hahn
,
G.
and
Sabidussi
,
G.
(
Kluwer
,
Dordrecht
,
1997
), pp.
225
275
.
36.
Moreau
,
L.
, “
Stability of multi-agent systems with time-dependent communication link
,”
IEEE Trans. Autom. Control
50
,
169
(
2005
).
37.
Newman
,
M. E. J.
, “
The structure and function of complex networks
,”
SIAM Rev.
45
,
167
(
2003
).
38.
Newman
,
M. E. J.
,
Moore
,
C.
, and
Watts
,
D. J.
, “
Mean-field solution of the small world network model
,”
Phys. Rev. Lett.
84
,
3201
(
2000
).
39.
Newman
,
M. E. J.
and
Watts
,
D. J.
, “
Renormalization group analysis of the small-world network model
,”
Phys. Lett. A
263
,
341
(
1999
).
40.
Olfati-Saber
,
R.
, “
Ultrafast consensus in the small-world networks
,”
Proceedings of American Control Conference
,
2005
, pp.
2371
2378
.
41.
Olfati-Saber
,
R.
and
Murray
,
R. M.
, “
Consensus problems in networks of agents with switching topology and time-delays
,”
IEEE Trans. Autom. Control
49
,
1520
(
2004
).
42.
Olfati-Saber
,
R.
and
Murray
,
R. M.
, “
Consensus protocols for networks of dynamic agents
,”
Proceedings of American Control Conference
,
2003
, Vol.
2
, pp.
951
956
.
43.
Osipov
,
G. V.
,
Kurths
,
J.
, and
Zhou
,
C. S.
,
Synchronization in Oscillatory Networks
(
Springer-Verlag
,
Berlin
,
2007
).
44.
Pecora
,
L. M.
and
Carroll
,
T. L.
, “
Master stability functions for synchronized coupled systems
,”
Phys. Rev. Lett.
80
,
2109
(
1998
).
45.
Pecora
,
L. M.
,
Carroll
,
T. L.
, and
Heagy
,
J. F.
, “
Synchronous chaos in coupled oscillator systems
,”
Phys. Rev. E
52
,
3420
(
1995
).
46.
Ren
,
W.
,
Beard
,
R. W.
, and
Atkins
,
E. M.
, “
A survey of consensus problems in multi-agent coordination
,”
Proceedings of American Control Conference
,
2005
, pp.
1859
1864
.
47.
Tahbaz-Salei
,
A.
and
Jadbabaie
,
A.
, “
Small world phenomenon, rapidly mixing Markov chains, and average consensus algorithms
,”
Proceedings of the 46th IEEE Conference on Decision and Control
, New Orleans, December
2007
, pp.
276
281
.
48.
Wang
,
X. F.
and
Chen
,
G.
, “
Synchronization in complex dynamical networks
,”
J. Syst. Sci. Complex.
16
,
1
(
2003
).
49.
Wang
,
X. F.
and
Chen
,
G.
, “
Synchronization in scale-free dynamical networks: Robustness and fragility
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
49
,
54
(
2002
).
50.
Wang
,
X. F.
and
Chen
,
G.
, “
Synchronization in small-world dynamical networks
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
12
,
187
(
2002
).
51.
Watanabe
,
S.
and
Strogatz
,
S. H.
, “
Integrability of a globally coupled oscillator array
,”
Phys. Rev. Lett.
70
,
2391
(
1993
).
52.
Watts
,
D. J.
and
Strogatz
,
S. H.
, “
Collective dynamics of ‘small world networks’
,”
Nature (London)
393
,
440
(
1998
).
53.
Winful
,
H. G.
and
Rahman
,
L.
, “
Synchronized chaos and spatiotemporal chaos in arrays of coupled lasers
,”
Phys. Rev. Lett.
65
,
1575
(
1990
).
You do not currently have access to this content.