In this paper, it is discovered that the statistical property of the consensus and synchronization of the small-world networks, that is, the Cheeger constant, is a major determinant to measure the convergence rate of the consensus and synchronization of the small-world networks. Further, we give a mathematical rigorous estimation of the lower bound for the algebraic connectivity of the small-world networks, which is much larger than the algebraic connectivity of the regular circle. This result explains why the consensus problems on the small-world network have an ultrafast convergence rate and how much it can be improved. Moreover, it also characterizes quantitatively what kind of the small-world networks can be synchronized.
REFERENCES
1.
Atay
, F. M.
, Biyikoglu
, T.
, and Jost
, J.
, “Network synchronization: Spectral versus statistical properties
,” Physica D
224
, 35
(2006
).2.
Atay
, F. M.
, Jost
, J.
, and Wende
, A.
, “Delays, connection topology, and synchronization of coupled chaotic maps
,” Phys. Rev. Lett.
92
, 144101
(2004
).3.
Barahona
, M.
and Pecora
, L. M.
, “Synchronization in small-world systems
,” Phys. Rev. Lett.
89
, 054101
(2002
).4.
Berman
, A.
and Zhang
, X. D.
, “Lower bounds for the eigenvalues of Laplacian matrices
,” Linear Algebra and Its Applications
316
, 13
(2000
).5.
Bollobás
, B.
, Random Graphs
, 2nd ed. (Cambridge University
, Cambridge, England
, 2001
).6.
7.
Chung
, F.
and Lu
, L. Y.
, Complex Graphs and Networks
(AMS
, Providence, Rhode Island
, 2006
).8.
Comellas
, F.
and Gago
, S.
, J. Phys. A
40
, 4483
(2007
).9.
10.
de Abreu
, N. M. M.
, “Old and new results on algebraic connectivity of graphs
,” Linear Algebra and Its Applications
423
, 53
(2007
).11.
Durrett
, R.
, Random Graph Dynamics
(Cambridge University
, Cambridge, U. K.
, 2006
).12.
Erdös
, P.
and Rényi
, A.
, “On the evolution of random graphs
,” Publ. Math. Inst. Hungarian Academy of Sciences
5
, 17
(1960
).13.
Fan
, J.
and Wang
, X. F.
, “On synchronization in scale-free dynamical networks
,” Physica A
349
, 443
(2005
).14.
Fan
, J.
and Wang
, X. F.
, “On synchronous preference of complex dynamical networks
,” Physica A
355
, 657
(2005
).15.
Fax
, J. A.
and Murray
, R. M.
, “Information flow and cooperative control of vehicle formations
,” IEEE Trans. Autom. Control
49
, 1465
(2004
).16.
Fiedler
, M.
, “Algebra connectivity of graphs
,” Czech. Math. J.
23
, 298
(1973
).17.
Fiedler
, M.
, “A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory
,” Czech. Math. J.
25
, 607
(1975
).18.
Fink
, K. S.
, Johnson
, G.
, Carroll
, T.
, Mar
, D.
, and Pecora
, L. M.
, “Three coupled oscillators as a universal probe of synchronization stability in coupled oscillator arrays
,” Phys. Rev. E
61
, 5080
(2000
).19.
Gade
, P. M.
and Hu
, C. K.
, “Synchronous chaos in coupled map with small-world interactions
,” Phys. Rev. E
62
, 6409
(2000
).20.
Gauthier
, D. J.
and Bienfang
, J. C.
, “Intermittent loss of synchronization in coupled chaotic oscillators: Toward a new criterion for high-quality synchronization
,” Phys. Rev. Lett.
77
, 1751
(1996
).21.
Godsil
, C.
and Royle
, G.
, Algebraic Graph Theory
(Springer-Verlag
, New York
, 2001
).22.
Heagy
, J. F.
, Carroll
, T. L.
, and Pecora
, L. M.
, “Synchronous chaos in coupled oscillator systems
,” Phys. Rev. E
50
, 1874
(1994
).23.
Heagy
, J. F.
, Pecora
, L. M.
, and Carroll
, T. L.
, “Short wavelength bifurcations and size instabilities in coupled oscillator systems
,” Phys. Rev. Lett.
74
, 4185
(1995
).24.
Hong
, H.
, Choi
, M. Y.
, and Kim
, B. J.
, “Synchronization on small-world networks
,” Phys. Rev. E
65
, 026139
(2002
).25.
Hovareshti
, P.
and Baras
, J. S.
, “Consensus problems on the small world graphs: A structural study
,” 2006 International Conference on Complex Systems
, Boston, Massachusetts, May 28–31, 2006
, http://www.ece.umd.edu/~baras/publications/papers/2006/06–11.pdf26.
Jadbabaie
, A.
, Lin
, J.
, and Morse
, A. D.
, “Coordination of groups of mobile autonomous agents using nearest neighbor rules
,” IEEE Trans. Autom. Control
48
, 988
(2003
).27.
Kowalski
, J. M.
, Albert
, G. L.
, and Gross
, G. W.
, “Asymptotically synchronous orbits in systems of excitable elements
,” Phys. Rev. A
42
, 6260
(1990
).28.
Kuramoto
, Y.
, “Cooperative dynamics of oscillator community—A study based on lattice of rings
,” in International Symposium on Mathematical Problems in Theoretical Physics
, Lecture Notes in Physics
Vol. 39
, edited by H.
Araki
(Springer
, Berlin
, 1975
), p. 1
.29.
Lago-Fernández
, L. F.
, Huerta
, R.
, Corbacho
, F.
, and Sigüenza
, J. A.
, “Fast response and temporal coherent oscillations in small-world networks
,” Phys. Rev. Lett.
84
, 2758
(2000
).30.
Li
, C.
and Chen
, G.
, “Phase synchronization in small-world networks of chaotic oscillators
,” Physica A
341
, 73
(2004
).31.
Li
, C.
and Chen
, G.
, “Synchronization in general complex dynamical networks with coupling delays
,” Physica A
343
, 263
(2004
).32.
Merris
, R.
, “A survey of graph Laplacians
,” Linear Multilinear Algebra
39
, 19
(1995
).33.
Merris
, R.
, “Laplacian matrices of graphs: A survey
,” Linear Algebra and Its Applications
197–198
, 143
(1994
).34.
Mohar
, B.
, “Isoperimetric numbers of graphs
,” J. Comb. Theory, Ser. B
47
, 274
(1989
).35.
Mohar
, B
., “Some applications of Laplace eigenvalues of graphs
,” in Graph Symmetry
, edited by Hahn
, G.
and Sabidussi
, G.
(Kluwer
, Dordrecht
, 1997
), pp. 225
–275
.36.
Moreau
, L.
, “Stability of multi-agent systems with time-dependent communication link
,” IEEE Trans. Autom. Control
50
, 169
(2005
).37.
Newman
, M. E. J.
, “The structure and function of complex networks
,” SIAM Rev.
45
, 167
(2003
).38.
Newman
, M. E. J.
, Moore
, C.
, and Watts
, D. J.
, “Mean-field solution of the small world network model
,” Phys. Rev. Lett.
84
, 3201
(2000
).39.
Newman
, M. E. J.
and Watts
, D. J.
, “Renormalization group analysis of the small-world network model
,” Phys. Lett. A
263
, 341
(1999
).40.
Olfati-Saber
, R.
, “Ultrafast consensus in the small-world networks
,” Proceedings of American Control Conference
, 2005
, pp. 2371
–2378
.41.
Olfati-Saber
, R.
and Murray
, R. M.
, “Consensus problems in networks of agents with switching topology and time-delays
,” IEEE Trans. Autom. Control
49
, 1520
(2004
).42.
Olfati-Saber
, R.
and Murray
, R. M.
, “Consensus protocols for networks of dynamic agents
,” Proceedings of American Control Conference
, 2003
, Vol. 2
, pp. 951
–956
.43.
Osipov
, G. V.
, Kurths
, J.
, and Zhou
, C. S.
, Synchronization in Oscillatory Networks
(Springer-Verlag
, Berlin
, 2007
).44.
Pecora
, L. M.
and Carroll
, T. L.
, “Master stability functions for synchronized coupled systems
,” Phys. Rev. Lett.
80
, 2109
(1998
).45.
Pecora
, L. M.
, Carroll
, T. L.
, and Heagy
, J. F.
, “Synchronous chaos in coupled oscillator systems
,” Phys. Rev. E
52
, 3420
(1995
).46.
Ren
, W.
, Beard
, R. W.
, and Atkins
, E. M.
, “A survey of consensus problems in multi-agent coordination
,” Proceedings of American Control Conference
, 2005
, pp. 1859
–1864
.47.
Tahbaz-Salei
, A.
and Jadbabaie
, A.
, “Small world phenomenon, rapidly mixing Markov chains, and average consensus algorithms
,” Proceedings of the 46th IEEE Conference on Decision and Control
, New Orleans, December 2007
, pp. 276
–281
.48.
Wang
, X. F.
and Chen
, G.
, “Synchronization in complex dynamical networks
,” J. Syst. Sci. Complex.
16
, 1
(2003
).49.
Wang
, X. F.
and Chen
, G.
, “Synchronization in scale-free dynamical networks: Robustness and fragility
,” IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
49
, 54
(2002
).50.
Wang
, X. F.
and Chen
, G.
, “Synchronization in small-world dynamical networks
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
12
, 187
(2002
).51.
Watanabe
, S.
and Strogatz
, S. H.
, “Integrability of a globally coupled oscillator array
,” Phys. Rev. Lett.
70
, 2391
(1993
).52.
Watts
, D. J.
and Strogatz
, S. H.
, “Collective dynamics of ‘small world networks’
,” Nature (London)
393
, 440
(1998
).53.
Winful
, H. G.
and Rahman
, L.
, “Synchronized chaos and spatiotemporal chaos in arrays of coupled lasers
,” Phys. Rev. Lett.
65
, 1575
(1990
).© 2010 American Institute of Physics.
2010
American Institute of Physics
You do not currently have access to this content.