One of the effects of noncommutative coordinate operators is that the delta function connected to the quantum mechanical amplitude between states sharp to the position operator gets smeared by a Gaussian distribution. Although this is not the full account of the effects of noncommutativity, this effect is, in particular, important as it removes the point singularities of Schwarzschild and Reissner–Nordström solutions. In this context, it seems to be of some importance to probe also into ringlike singularities which appear in the Kerr case. In particular, starting with an anisotropic energy-momentum tensor and a general axisymmetric ansatz of the metric together with an arbitrary mass distribution (e.g., Gaussian), we derive the full set of Einstein equations that the noncommutative geometry inspired Kerr solution should satisfy. Using these equations we prove two theorems regarding the existence of certain Kerr metrics inspired by noncommutative geometry.

1.
J.
Madore
,
Geometry and Quantum Physics
,
Lecture Notes in Physics
Vol.
543
(
Springer
,
New York
,
2000
);
A. H.
Chamseddine
,
G.
Felder
, and
J.
Fröhlich
,
Commun. Math. Phys.
155
,
1993
(
2005
);
A.
Connes
,
J. Math. Phys.
36
,
6194
(
1995
).
2.
L.
Alvarez-Gaumé
and
S. R.
Wadia
,
Phys. Lett. B
501
,
319
(
2001
);
L.
Alvarez-Gaumé
and
J. L. F.
Barbón
,
Int. J. Mod. Phys. A
16
,
1123
(
2001
).
G. E.
Moyal
,
Proc. Cambridge Philos. Soc.
45
,
99
(
1949
).
4.
A. W.
Peet
and
J.
Polchinski
,
Phys. Rev. D
59
,
065011
(
1999
).
5.
A.
Smailagic
and
E.
Spallucci
,
J. Phys. A
36
,
L517
(
2003
).
6.
R. J.
Glauber
,
Phys. Rev.
131
,
2766
(
1963
).
7.
8.
A.
Smailagic
and
E.
Spallucci
,
J. Phys. A
36
,
L467
(
2003
).
9.
R.
Banerjee
,
B. R.
Majhi
, and
S.
Samanta
,
Phys. Rev. D
77
,
124035
(
2008
);
R.
Banerjee
,
B. R.
Majhi
, and
S. K.
Modak
,
Class. Quantum Grav.
26
,
085010
(
2009
);
R.
Banerjee
,
S.
Gangopadhyay
, and
S. K.
Modak
,
Phys. Lett. B
686
,
181
(
2010
).
10.
S.
Ansoldi
,
P.
Nicolini
,
A.
Smailagic
, and
E.
Spallucci
,
Phys. Lett. B
645
,
261
(
2007
).
11.
P.
Nicolini
,
A.
Smailagic
, and
E.
Spallucci
,
Phys. Lett. B
632
,
547
(
2006
).
12.
I.
Arraut
,
D.
Batic
, and
M.
Nowakowski
,
J. Math. Phys.
51
,
022503
(
2010
);
I.
Arraut
,
D.
Batic
, and
M.
Nowakowski
,
Class. Quantum Grav.
26
,
245006
(
2009
).
13.
S.
Chandrasekhar
and
J. L.
Friedman
,
Astrophys. J.
175
,
379
(
1972
).
14.
A.
Smailagic
and
E.
Spallucci
,
Phys. Lett. B
688
,
82
(
2010
).
15.
S.
Chandrasekhar
,
The Mathematical Theory of Black Holes
(
Clarendon
,
Oxford
,
1983
).
16.
R. H.
Boyer
and
R. W.
Lindquist
,
J. Math. Phys.
8
,
265
(
1967
).
17.
J.
Plebanski
and
A.
Krasinski
,
An Introduction to General Relativity and Cosmology
(
Cambridge University Press
,
Cambridge
,
2006
).
You do not currently have access to this content.