In this paper, we investigate the influence of dissipation on decay properties of the solutions for a quasilinear beam equation with nonlinear weak dissipation.
REFERENCES
1.
F.
Alabau-Boussouira
, “Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems
,” Appl. Math. Optim.
51
, 61
(2005
).2.
V. I.
Arnold
, Mathematical Methods of Classical Mechanics
(Springer
, New York
, 1989
).3.
J. M.
Ball
, “Stability theory for an extensible beam
,” J. Differ. Equations
14
, 399
(1973
).4.
P.
Biler
, “Remark on the decay for generalized damped string and beam equations
,” Nonlinear Anal.
10
, 839
(1986
).5.
A.
Benaissa
and A.
Guesmia
, “Energy decay for wave equations of -Laplacian type with weakly nonlinear dissipation
,” Electron. J. Differ. Equations
2008
, 1
(2008
).6.
E. H.
de Brito
, “Decay estimates for the generalized damped extensible string and beam equations
,” Nonlinear Anal.
8
, 1489
(1984
).7.
D.
Burgreen
, “Free vibrations of a pin-ended column with constant distance between pin ends
,” ASME Trans. J. Appl. Mech.
18
, 135
(1951
).8.
M. M.
Cavalcanti
, V. N. D.
Cavalcanti
, and I.
Lasiecka
, “Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction
,” J. Differ. Equations
236
, 407
(2007
).9.
M. M.
Cavalcanti
, V. N.
Domingos Cavalcanti
, and P.
Martinez
, “General decay rate estimates for viscoelastic dissipative systems
,” Nonlinear Anal. Theory, Methods Appl.
68
, 177
(2008
).10.
R. W.
Dickey
, “Free vibrations and dynamic buckling of the extensible beam
,” J. Math. Anal. Appl.
29
, 443
(1970
).11.
J. G.
Eisley
, “Nonlinear vibrations of beams and rectangular plates
,” Z. Angew. Math. Phys.
15
, 167
(1964
).12.
A.
Guesmia
and S. A.
Messaoudi
, “General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping
,” Math. Methods Appl. Sci.
32
, 2102
(2009
).13.
A.
Haraux
and E.
Zuazua
, “Decay estimates for some semilinear damped hyperbolic problems
,” Arch. Ration. Mech. Anal.
100
, 191
(1988
).14.
R.
Ikehata
and Y. K.
Inoue
, “Global existence of weak solutions for two-dimensional semilinear wave equations with strong damping in an exterior domain
,” Nonlinear Anal. Theory, Methods Appl.
68
, 154
(2008
).15.
V.
Komonik
, Exact Controllability and Stabilization: The Multiplier Method
(Wiley
, New York
/Masson
, Paris
, 1994
).16.
I.
Lasiecka
and D.
Tataru
, “Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping
,” Diff. Integral Eq.
6
, 507
(1993
).17.
I.
Lasiecka
and R.
Triggiani
, “Well-posedness and sharp uniform decay rates at the -level of the Schrödinger equation with nonlinear boundary dissipation
,” J. Evol. Equ.
6
, 485
(2006
).18.
J. L.
Lions
and E.
Magenes
, Non-Homogeneous Boundary Value Problem and Applications
(Springer-Verlag
, New York
, 1972
), Vol. I
.19.
P.
Martinez
, “A new method to obtain decay rate estimates for dissipative systems
,” ESAIM: COCV
4
, 419
(1999
).20.
L. A.
Medeiros
, “On a new class of nonlinear wave equations
,” J. Math. Anal. Appl.
69
, 252
(1979
).21.
S. D. B.
Menezes
, E. A.
Oliveira
, D. C.
Pereira
, and J.
Ferreira
, “Existence, uniqueness and uniform decay for the nonlinear beam degenerate equation with weak damping
,” Appl. Math. Comput.
154
, 555
(2004
).22.
G. P.
Menzala
, “On classical solutions of a quasilinear hyperbolic equation
,” Nonlinear Anal.
3
, 613
(1979
).23.
M.
Nakao
, “Asymptotic stability of the bounded or almost periodic solution of the wave equation with nonlinear dissipative term
,” J. Math. Anal. Appl.
58
, 336
(1977
).24.
M.
de Lacerda Oliveira
and O. A.
Lima
, “Exponential decay of the solutions of the beam system
,” Nonlinear Anal.
42
, 1271
(2000
).25.
S.
Woinowsky-Krieger
, “The effect of axial force on the vibration of hinged bars
,” ASME Trans. J. Appl. Mech.
17
, 35
(1950
).26.
Y.
Zhijian
, “Cauchy problem for quasi-linear wave equations with viscous damping
,” J. Math. Anal. Appl.
320
, 859
(2006
).27.
E.
Zuazua
, “Stability and decay for a class of nonlinear hyperbolic problems
,” Asymptotic Anal.
1
, 161
(1988
).© 2010 American Institute of Physics.
2010
American Institute of Physics
You do not currently have access to this content.