For any partial differential equation (PDE) system, a local conservation law yields potential equations in terms of some potential variable, which normally is a nonlocal variable. The current paper examines situations when such a potential variable is a local variable, i.e., is a function of the independent and dependent variables of a given PDE system, and their derivatives. In the case of two independent variables, a simple necessary and sufficient condition is presented for the locality of such a potential variable, and this is illustrated by several examples. As a particular example, two-dimensional reductions of equilibrium equations for fluid and plasma dynamics are considered. It is shown that such reductions with respect to helical, axial, and translational symmetries have conservation laws which yield local potential variables. This leads to showing that the well-known Johnson–Frieman–Kruskal–Oberman (JFKO) and Bragg–Hawthorne (Grad–Shafranov) equations are locally related to the corresponding helically and axially symmetric PDE systems of fluid/plasma dynamics. For the axially symmetric case, local symmetry classifications and arising invariant solutions are compared for the original PDE system and the Bragg–Hawthorne (potential) equation. The potential equation is shown to have additional symmetries, denoted as restricted symmetries. Restricted symmetries leave invariant a family of solutions of a given PDE system but not the whole solution manifold, and hence are not symmetries of the given PDE system. Corresponding reductions are shown to yield solutions, which are not obtained as invariant solutions from local symmetry reduction.

1.
G. W.
Bluman
,
A. F.
Cheviakov
, and
S. C.
Anco
,
Applications of Symmetry Methods to Partial Differential Equations
,
Applied Mathematical Sciences
Vol.
168
(
Springer
,
New York
,
2010
).
2.
G.
Bluman
,
A. F.
Cheviakov
, and
N. M.
Ivanova
,
J. Math. Phys.
47
,
113505
(
2006
).
3.
G.
Bluman
and
A. F.
Cheviakov
,
J. Math. Phys.
46
,
123506
(
2005
).
4.
G.
Bluman
and
S.
Kumei
,
J. Math. Phys.
28
,
307
(
1987
).
5.
G.
Bluman
,
S.
Kumei
, and
G.
Reid
,
J. Math. Phys.
29
,
806
(
1988
).
6.
S.
Anco
and
G.
Bluman
,
J. Math. Phys.
37
,
2361
(
1996
).
7.
G.
Bluman
and
A. F.
Cheviakov
,
J. Math. Anal. Appl.
333
,
93
(
2007
).
8.
G.
Bluman
and
P.
Doran-Wu
,
Acta Appl. Math.
41
,
21
(
1995
).
9.
S.
Akhatov
,
R.
Gazizov
, and
N.
Ibragimov
,
J. Sov. Math.
55
,
1401
(
1991
).
10.
A.
Sjöberg
and
F. M.
Mahomed
,
Appl. Math. Comput.
150
,
379
(
2004
).
11.
G.
Bluman
,
A. F.
Cheviakov
, and
J. -F.
Ganghoffer
,
J. Eng. Math.
62
,
203
(
2008
).
12.
S.
Anco
and
G.
Bluman
,
J. Math. Phys.
38
,
3508
(
1997
).
13.
G.
Bluman
, in
Applications of Analytic and Geometric Methods to Nonlinear Differential Equations
, edited by
P. A.
Clarkson
(
Kluwer
,
Dordrecht
,
1993
), pp.
363
373
.
14.
G.
Bluman
,
S.
Anco
, and
T.
Wolf
,
Acta Appl. Math.
101
,
2138
(
2008
).
15.
J. P.
Kubitschek
and
P. D.
Weidman
,
Phys. Fluids
20
,
091104
(
2008
).
16.
Astrophysical Jets: Open Problems
, edited by
S.
Massaglia
and
G.
Bodo
(
Gordon and Breach
,
New York
,
1998
).
17.
O. I.
Bogoyavlenskij
,
Phys. Rev. E
62
,
8616
(
2000
).
18.
A. F.
Cheviakov
and
O. I.
Bogoyavlenskij
,
J. Phys. A
37
,
7593
(
2004
).
19.
R.
Kaiser
and
D.
Lortz
,
Phys. Rev. E
52
,
3034
(
1995
).
20.
O. I.
Bogoyavlenskij
,
Phys. Rev. Lett.
84
,
1914
(
2000
).
21.
O. I.
Bogoyavlenskij
,
J. Math. Phys.
41
,
2043
(
2000
).
22.
J. L.
Johnson
,
C. R.
Oberman
,
R. M.
Kulsrud
, and
E. A.
Frieman
,
Phys. Fluids
1
,
281
(
1958
).
23.
S. L.
Bragg
and
W. R.
Hawthorne
,
J. Aeronaut. Sci.
17
,
243
(
1950
).
24.
R.
Lüst
and
A.
Schlüter
,
Z. Naturforsch. A
12A
,
850
(
1957
).
25.
H.
Grad
and
H.
Rubin
,
Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy
(
United Nations
,
Geneva
,
1958
), Vol.
31
, p.
190
.
26.
V. D.
Shafranov
,
Sov. Phys. JETP
6
,
545
(
1958
).
27.
A. F.
Cheviakov
,
Comput. Phys. Commun.
176
,
48
(
2007
) (the GEM package and documentation is available at http://math.usask.ca/~cheviakov/gem/).
28.
S.
Anco
and
G.
Bluman
,
Phys. Rev. Lett.
78
,
2869
(
1997
).
29.
S.
Anco
and
G.
Bluman
,
Eur. J. Appl. Math.
13
,
567
(
2002
).
30.
M. D.
Kruskal
and
R. M.
Kulsrud
,
Phys. Fluids
1
,
265
(
1958
).
31.
V. K.
Andreev
,
O. V.
Kaptsov
,
V. V.
Pukhnachov
, and
A. A.
Rodionov
,
Applications of Group Theoretical Methods in Hydrodynamics
(
Kluwer Academic
,
Dordrecht
,
1998
).
32.
S.
Guenther
, “
Symmetry methods for turbulence modeling
,” Ph.D. thesis,
TU Darmstadt
,
2005
.
33.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1965
).
34.
G. W.
Bluman
, “
Construction of solutions to partial differential equations by the use of transformation groups
,” Ph.D. thesis,
California Institute of Technology
,
1967
.
35.
G. W.
Bluman
and
J. D.
Cole
,
J. Math. Mech.
18
,
1025
(
1969
).
36.
A. F.
Cheviakov
,
J. Math. Phys.
49
,
083502
(
2008
).
You do not currently have access to this content.