A new method for the approximate disentangling of exponential operators based on the Baker–Campbell–Haussdorff theorem is suggested and implemented in a computer program. The operators to be disentangled must form a finite-dimensional Lie algebra. The accuracy of the method is tested and demonstrated in several explicitly calculated examples, where exact analytic solutions are available.
REFERENCES
1.
J.
Wei
and E.
Norman
, J. Math. Phys.
4
, 575
(1963
).2.
R. P.
Feynman
, Phys. Rev.
84
, 108
(1951
).3.
R. J.
Glauber
, Phys. Rev.
84
, 395
(1951
).4.
R. M.
Wilcox
, J. Math. Phys.
8
, 962
(1967
).5.
V. S.
Popov
, Phys. Usp.
50
, 1217
(2007
).6.
M.
Suzuki
, Commun. Math. Phys.
57
, 193
(1977
).7.
A.
Mufti
, H. A.
Schmitt
, and M.
Sargent
III, Am. J. Phys.
61
, 729
(1993
).8.
R.
Barak
and Y.
Ben-Aryeh
, J. Opt. Soc. Am. B
25
, 361
(2008
).9.
A.
DasGupta
, Am. J. Phys.
64
, 1422
(1996
).10.
H. F.
Baker
, Proc. London Math. Soc.
s2-3
, 24
(1905
).11.
J. E.
Campbell
, Proc. London Math. Soc.
s1-29
, 14
(1897
).12.
13.
M.
Weyrauch
and D.
Scholz
, Comput. Phys. Commun.
180
, 1558
(2009
).14.
15.
an English translation may be found in
Selected Papers of E.B. Dynkin with Commentary
, edited by E. B.
Dynkin
, A. A.
Yushkevich
, G. M.
Seitz
, and A. L.
Onishchik
(American Mathematical Society
, Providence, RI
/International Press
, Cambridge, MA
, 2000
).16.
J. A.
Oteo
, J. Math. Phys.
32
, 419
(1991
).17.
Wolfram Research, Inc.
, MATHEMATICA, Version 7.0, Champaign, Illinois (2008
).18.
K.
Goldberg
, Duke Math. J.
23
, 13
(1956
).19.
M.
Toutounji
, J. Chem. Phys.
128
, 164103
(2008
).© 2010 American Institute of Physics.
2010
American Institute of Physics
You do not currently have access to this content.