A new method for the approximate disentangling of exponential operators based on the Baker–Campbell–Haussdorff theorem is suggested and implemented in a computer program. The operators to be disentangled must form a finite-dimensional Lie algebra. The accuracy of the method is tested and demonstrated in several explicitly calculated examples, where exact analytic solutions are available.

1.
J.
Wei
and
E.
Norman
,
J. Math. Phys.
4
,
575
(
1963
).
2.
R. P.
Feynman
,
Phys. Rev.
84
,
108
(
1951
).
3.
R. J.
Glauber
,
Phys. Rev.
84
,
395
(
1951
).
4.
R. M.
Wilcox
,
J. Math. Phys.
8
,
962
(
1967
).
6.
M.
Suzuki
,
Commun. Math. Phys.
57
,
193
(
1977
).
7.
A.
Mufti
,
H. A.
Schmitt
, and
M.
Sargent
 III
,
Am. J. Phys.
61
,
729
(
1993
).
8.
R.
Barak
and
Y.
Ben-Aryeh
,
J. Opt. Soc. Am. B
25
,
361
(
2008
).
9.
A.
DasGupta
,
Am. J. Phys.
64
,
1422
(
1996
).
10.
H. F.
Baker
,
Proc. London Math. Soc.
s2-3
,
24
(
1905
).
11.
J. E.
Campbell
,
Proc. London Math. Soc.
s1-29
,
14
(
1897
).
12.
F.
Hausdorff
,
Ber. Verh. Saechs. Akad. Wiss. Leipzig, Math.-Phys. Kl.
58
,
19
(
1906
).
13.
M.
Weyrauch
and
D.
Scholz
,
Comput. Phys. Commun.
180
,
1558
(
2009
).
14.
E. B.
Dynkin
,
Mat. Sb.
67
,
155
(
1949
).
15.
E. B.
Dynkin
,
Dokl. Akad. Nauk SSSR
57
,
323
(
1947
);
an English translation may be found in
Selected Papers of E.B. Dynkin with Commentary
, edited by
E. B.
Dynkin
,
A. A.
Yushkevich
,
G. M.
Seitz
, and
A. L.
Onishchik
(
American Mathematical Society
,
Providence, RI
/
International Press
,
Cambridge, MA
,
2000
).
16.
J. A.
Oteo
,
J. Math. Phys.
32
,
419
(
1991
).
17.
Wolfram Research, Inc.
, MATHEMATICA, Version 7.0, Champaign, Illinois (
2008
).
19.
M.
Toutounji
,
J. Chem. Phys.
128
,
164103
(
2008
).
You do not currently have access to this content.