This article summarizes and consolidates investigations on hyperbolic complex numbers with respect to the Klein–Gordon equation for fermions and bosons. The hyperbolic complex numbers are applied in the sense that complex extensions of groups and algebras are performed not with the complex unit, but with the product of complex and hyperbolic unit. The modified complexification is the key ingredient for the theory. The Klein–Gordon equation is represented in this framework in the form of the first invariant of the Poincaré group, the mass operator, in order to emphasize its geometric origin. The possibility of new interactions arising from hyperbolic complex gauge transformations is discussed.
REFERENCES
1.
D.
Finkelstein
, J. M.
Jauch
, S.
Schiminovich
, and D.
Speiser
, J. Math. Phys.
3
, 207
(1962
).2.
D.
Finkelstein
, J. M.
Jauch
, S.
Schiminovich
, and D.
Speiser
, J. Math. Phys.
4
, 788
(1963
).3.
D.
Finkelstein
, J. M.
Jauch
, and D.
Speiser
, J. Math. Phys.
4
, 136
(1963
).4.
S. L.
Adler
, Quaternionic Quantum Mechanics and Quantum Fields
(Oxford University Press
, New York
, 1995
).5.
C.
Lanczos
, Z. Phys.
37
, 405
(1926
).6.
C.
Lanczos
, Z. Phys.
57
, 447
(1929
).7.
C.
Lanczos
, Z. Phys.
57
, 474
(1929
).8.
C.
Lanczos
, Z. Phys.
57
, 484
(1929
).9.
A. W.
Conway
, Proc. R. Soc. London, Ser. A
162
, 145
(1937
).10.
J. D.
Edmonds
, Int. J. Theor. Phys.
6
, 205
(1972
).11.
12.
W.
Gough
, Eur. J. Phys.
7
, 35
(1986
).13.
W.
Gough
, Eur. J. Phys.
8
, 164
(1987
).14.
W.
Gough
, Eur. J. Phys.
10
, 188
(1989
).15.
F.
Gürsey
, Phys. Rev.
77
, 844
(1950
).16.
F.
Gürsey
, Nuovo Cimento
7
, 411
(1958
).17.
P.
Rotelli
, Mod. Phys. Lett. A
4
, 933
(1989
).18.
S.
De Leo
and W. A.
Rodrigues
, Int. J. Theor. Phys.
37
, 1511
(1998
).19.
A.
Gsponer
and J. -P.
Hurni
, Found. Phys. Lett.
14
, 77
(2001
).20.
21.
I. M.
Yaglom
, A Simple Non-Euclidean Geometry and Its Physical Basis
(Springer
, New York
, 1979
).22.
J.
Hucks
, J. Math. Phys.
34
, 5986
(1993
).23.
F.
Catoni
, D.
Boccaletti
, R.
Cannata
, V.
Catoni
, E.
Nichelatti
, and P.
Zampetti
, The Mathematics of Minkowski Space-Time: With an Introduction to Commutative Hypercomplex Numbers
(Birkhäuser
, Basel
, 2008
).24.
D.
Lambert
and Ph.
Tombal
, Int. J. Theor. Phys.
26
, 943
(1987
).25.
D.
Lambert
and B.
Piettet
, Class. Quantum Grav.
5
, 307
(1988
).26.
P.
Bracken
and J.
Hayes
, Am. J. Phys.
71
, 726
(2003
).27.
A.
Khrennikov
, Infinite Dimen. Anal., Quantum Probab., Relat. Top.
10
, 421
(2007
).28.
A.
Khrennikov
and G.
Segre
, Int. J. Theor. Phys.
45
, 1869
(2006
).29.
30.
S.
Ulrych
, Phys. Lett. B
625
, 313
(2005
).31.
W. E.
Baylis
, Electrodynamics: A Modern Geometrical Approach
(Birkhäuser
, Boston
, 1999
).32.
W. E.
Baylis
and G.
Sobczyk
, Int. J. Theor. Phys.
43
, 2061
(2004
).33.
S.
Ulrych
, Adv. Appl. Clifford Algebras
18
, 93
(2008
).34.
S.
Ulrych
, Phys. Lett. B
633
, 631
(2006
).35.
I. R.
Porteous
, Clifford Algebras and the Classical Groups
(Cambridge University Press
, Cambridge
, 1995
).36.
Z. -Z.
Zhong
, J. Math. Phys.
25
, 3538
(1984
).37.
Z. -Z.
Zhong
, J. Math. Phys.
26
, 404
(1985
).38.
Z. -Z.
Zhong
, J. Phys. A
25
, L397
(1992
).39.
W. -K.
Tung
, Group Theory in Physics
(World Scientific
, Singapore
, 1985
).40.
M.
Göckeler
and T.
Schücker
, Differential Geometry, Gauge Theories, and Gravity
(Cambridge University Press
, Cambridge
, 1987
).41.
W. A.
Rodrigues
, Jr. and E. C.
Capelas de Oliveira
, The Many Faces of Maxwell, Dirac and Einstein Equations. A Clifford Bundle Approach
, Lecture Notes in Physics
Vol. 722
(Springer
, New York
, 2007
).42.
V.
Majerník
, Astrophys. Space Sci.
14
, 265
(1971
).43.
A.
Singh
, Lett. Nuovo Cimento Soc. Ital. Fis.
34
, 193
(1982
).44.
A.
Zee
, Phys. Rev. Lett.
42
, 417
(1979
).45.
S. L.
Adler
, Phys. Rev. Lett.
44
, 1567
(1980
).46.
S. L.
Adler
, Rev. Mod. Phys.
54
, 729
(1982
).© 2010 American Institute of Physics.
2010
American Institute of Physics
You do not currently have access to this content.