Motivated by the notion of -functional, we introduce a notion of -completely positive map between -algebras which is a Hermitian map satisfying a certain positivity condition, and then a -completely positive map which is not completely positive is constructed. We establish the Kasparov-Stinespring-Gelfand-Naimark-Segal constructions of -algebra and -algebra on Krein -modules with -completely positive maps.
REFERENCES
1.
Antoine
, J. P.
and Ôta
, S.
, “Unbounded GNS representations of -algebra in a Krein space
,” Lett. Math. Phys.
18
, 267
(1989
).2.
Bognár
, J.
, Indefinite Inner Product Spaces
(Springer
, Berlin
, 1974
).3.
Borchers
, H. J.
, “On the structure of the algebra of field operators
,” Nuovo Cimento
24
, 214
(1962
).4.
Hofmann
, G.
, “An explicit realization of a GNS representation in a Krein-space
,” Publ. Res. Inst. Math. Sci.
29
, 267
(1993
).5.
Hofmann
, G.
, “On GNS representations on inner product spaces, I. The structure of the representation space
,” Commun. Math. Phys.
191
, 299
(1998
).6.
Kasparov
, G. G.
, “Hilbert -modules: theorems of Stinespring and Voiculescu
,” J. Oper. Theory
4
, 133
(1980
).7.
Lance
, E. C.
, Hilbert -Modules. A Toolkit for Operator Algebraists, London Mathematical Society Lecture
Series No. 210 (Cambridge University Press
, Cambridge
, 1995
).8.
Ôta
, S.
, “Unbounded representations of a -algebra on indefinite metric space
,” Ann. Inst. Henri Poincare
48
, 333
(1988
).9.
Powers
, R. T.
, “Self-adjoint algebras of unbounded operators
,” Commun. Math. Phys.
21
, 85
(1971
).10.
Scheibe
, E.
, Über Feldtheorien in Zustandsräumen mit indefiniter Metrik. Mimeographed notes of the Max-Planck Institut für Physik und Astrophysik in München, München, 1960
.11.
Stinespring
, W.
, “Positive functions on algebras
,” Proc. Am. Math. Sci.
6
, 211
(1955
).12.
Strocchi
, F.
and Wightman
, A. S.
, “Proof of charge selection rule in local relativistic quantum field theory
,” J. Math. Phys.
15
, 2198
(1974
).13.
Uhlmann
, A.
, “Über die definition der quantenfelder nach Wightman und Haag
,” Wiss. Z. Karl-Marx-Univ. Leipzig Math.-Nat. Reihe
11
, 213
(1962
).© 2010 American Institute of Physics.
2010
American Institute of Physics
You do not currently have access to this content.