Motivated by the notion of P-functional, we introduce a notion of α-completely positive map between -algebras which is a Hermitian map satisfying a certain positivity condition, and then a α-completely positive map which is not completely positive is constructed. We establish the Kasparov-Stinespring-Gelfand-Naimark-Segal constructions of C-algebra and -algebra on Krein C-modules with α-completely positive maps.

1.
Antoine
,
J. P.
and
Ôta
,
S.
, “
Unbounded GNS representations of -algebra in a Krein space
,”
Lett. Math. Phys.
18
,
267
(
1989
).
2.
Bognár
,
J.
,
Indefinite Inner Product Spaces
(
Springer
,
Berlin
,
1974
).
3.
Borchers
,
H. J.
, “
On the structure of the algebra of field operators
,”
Nuovo Cimento
24
,
214
(
1962
).
4.
Hofmann
,
G.
, “
An explicit realization of a GNS representation in a Krein-space
,”
Publ. Res. Inst. Math. Sci.
29
,
267
(
1993
).
5.
Hofmann
,
G.
, “
On GNS representations on inner product spaces, I. The structure of the representation space
,”
Commun. Math. Phys.
191
,
299
(
1998
).
6.
Kasparov
,
G. G.
, “
Hilbert C-modules: theorems of Stinespring and Voiculescu
,”
J. Oper. Theory
4
,
133
(
1980
).
7.
Lance
,
E. C.
, Hilbert C-Modules. A Toolkit for Operator Algebraists,
London Mathematical Society Lecture
Series No. 210 (
Cambridge University Press
,
Cambridge
,
1995
).
8.
Ôta
,
S.
, “
Unbounded representations of a -algebra on indefinite metric space
,”
Ann. Inst. Henri Poincare
48
,
333
(
1988
).
9.
Powers
,
R. T.
, “
Self-adjoint algebras of unbounded operators
,”
Commun. Math. Phys.
21
,
85
(
1971
).
10.
Scheibe
,
E.
, Über Feldtheorien in Zustandsräumen mit indefiniter Metrik. Mimeographed notes of the Max-Planck Institut für Physik und Astrophysik in München, München,
1960
.
11.
Stinespring
,
W.
, “
Positive functions on C algebras
,”
Proc. Am. Math. Sci.
6
,
211
(
1955
).
12.
Strocchi
,
F.
and
Wightman
,
A. S.
, “
Proof of charge selection rule in local relativistic quantum field theory
,”
J. Math. Phys.
15
,
2198
(
1974
).
13.
Uhlmann
,
A.
, “
Über die definition der quantenfelder nach Wightman und Haag
,”
Wiss. Z. Karl-Marx-Univ. Leipzig Math.-Nat. Reihe
11
,
213
(
1962
).
You do not currently have access to this content.