We show how to apply to Hamiltonian differential systems recent results for studying the periodic orbits of a differential system using the averaging theory. We have chosen two classical integrable Hamiltonian systems, one with the Hooke potential and the other with the Kepler potential, and we study the periodic orbits which bifurcate from the periodic orbits of these integrable systems, first perturbing the Hooke Hamiltonian with a nonautonomous potential, and second perturbing the Kepler problem with an autonomous potential.
REFERENCES
1.
Arnold
, V. I.
, Kozlov
, V. V.
, and Neishtadt
, A. I.
, Mathematical Aspects of Classical and Celestial Mechanics
(Springer-Verlag
, Berlin
, 1997
).2.
Abraham
, R.
and Marsden
, J. E.
, Foundations of Mechanics
, 2nd ed. (Benjamin/Cummings
, Reading, MS
, 1978
).3.
Buicǎ
, A.
, Françoise
, J. P.
, and Llibre
, J.
, “Periodic solutions of nonlinear periodic differential systems with a small parameter
,” Commun. Pure Appl. Anal.
6
, 103
(2007
).4.
Goldstein
, H.
, Poole
, C.
, and Safko
, J.
, Classical Mechanics
, 3rd ed. (Addison-Wesley
, Reading
, 2002
).5.
Greenspan
, B. D.
and Holmes
, P. J.
, “Repeated resonance and homoclinic bifurcation in a periodically forced family of oscillators
,” SIAM J. Math. Anal.
15
, 69
(1984
).6.
Guckenheimer
, J.
and Holmes
, P.
, Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector fields
(Springer
, New York
, 1983
).7.
Llibre
, J.
, Teixeira
, M. A.
, and Torregrosa
, J.
, “Limit cycles bifurcating from a -dimensional isochronous set center contained in with
,” Math. Phys., Anal. Geom.
10
, 237
(2007
).8.
Lochak
, P.
and Meunier
, C.
, Applied Mathematical Sciences
Vol. 72
, (Springer-Verlag
, New York
, 1988
).9.
Meyer
, K. R.
, Hall
, G. R.
, and Offin
, D.
, 2nd ed. Applied Mathematical Science
, Vol. 90
, (Springer-Verlag
, New York
, 2009
).10.
Sanders
, J. A.
and Verhulst
, F.
, Applied Mathematical Science
, Vol. 59
, (Springer-Verlag
, New York
, 1985
).11.
Verhulst
, F.
, Nonlinear Differential Equations and Dynamical Systems
(Springer-Verlag
, Berlin
, 1996
).© 2010 American Institute of Physics.
2010
American Institute of Physics
You do not currently have access to this content.