We discuss exterior differential systems (EDSs) for the vacuum gravitational field. These EDSs are derived by varying the Hilbert–Einstein Lagrangian, given most elegantly as a Cartan 4-form calibrating 4-spaces embedded in ten flat dimensions. In particular, we thus formulate with tetrad equations the Regge–Teitelboim (RT) dynamics “à la string;” it arises when variation of the 4-spaces gives the Euler–Lagrange equations of a multicontact field theory. We calculate the Cartan character table of this EDS, showing the field equations to be well posed with no gauge freedom. The Hilbert Lagrangian as usually varied over just the intrinsic curvature structure of a 4-space yields only a subset of this dynamics, viz., solutions satisfying additional conditions constraining them to be Ricci flat. In the static spherically symmetric case, we present a new tetrad embedding in flat six dimensions, which allows reduction of the RT field equations to a quadrature; the Schwarzschild metric is a special case. As has previously been noted, there may be a classical correspondence of the RT theory with the hidden dimensions of brane theory, and perhaps this extended general relativistic dynamics holds in extreme circumstances where it can be interpreted as including a sort of dark or bulk energy even though no term with a cosmological constant is included in the Lagrangian. As a multicontact system, canonical quantization should be straightforward.

1.
T.
Regge
and
C.
Teitelboim
, in
Proceedings of the First Marcel Grossman Meeting
, Trieste, edited by
R.
Ruffini
(
North-Holland
,
Amsterdam
,
1975
).
2.
M.
Pavšič
,
Class. Quantum Grav.
2
,
869
(
1985
).
3.
F. B.
Estabrook
and
H. D.
Wahlquist
,
Class. Quantum Grav.
10
,
1851
(
1993
);
F. B.
Estabrook
,
R. S.
Robinson
, and
H. D.
Wahlquist
,
Class. Quantum Grav.
16
,
911
(
1999
). When a first version of the present paper was posted in 2009, Professor V. Tapia kindly called my attention to the references prior to these, of which we have heretofore been unaware, and for which I thank him.
4.
S.
Deser
,
F. A. E.
Pirani
, and
D. C.
Robinson
,
Phys. Rev. D
14
,
3301
(
1976
).
5.
V.
Tapia
,
Class. Quantum Grav.
6
,
L49
(
1989
).
6.
D.
Karasik
and
A.
Davidson
,
Phys. Rev. D
67
,
064012
(
2003
).
7.
A.
Davidson
,
Class. Quantum Grav.
16
,
653
(
1999
).
8.
A.
Davidson
,
D.
Karasik
, and
Y.
Lederer
,
Phys. Rev. D
72
,
064011
(
2005
).
9.
R.
Cordero
,
A.
Molgado
, and
E.
Rojas
,
Phys. Rev. D
79
,
024024
(
2009
).
10.
T. A.
Ivey
and
J. M.
Landsberg
,
Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems
,
Graduate Studies in Mathematics
Vol.
61
(
American Mathematical Society
,
Providence
,
2003
).
11.
H. D.
Wahlquist
, Suite of MATHEMATICA programs for manipulating exterior differential forms, AVF Programs,
2003
. Available from the SIGMA website: http://www.emis.de/journals/SIGMA/2008/063/Wahlquist2003.zip.
12.
F. B.
Estabrook
,
Phys. Rev. D
71
,
044004
(
2005
).
13.
L.
Buchman
and
J.
Bardeen
,
Phys. Rev. D
67
,
084017
(
2003
).
14.
F. B.
Estabrook
,
Class. Quantum Grav.
23
,
2841
(
2006
).
15.
R.
Bryant
,
P.
Griffiths
, and
D.
Grossman
,
Exterior Differential Systems and Euler-Lagrange Partial Differential Equations
(
The University of Chicago Press
,
Chicago
,
2003
).
16.
M. J.
Gotay
,
J.
Isenberg
, and
J. E.
Marsden
, e-print arXiv:math-ph/0411032v1.
17.
F. B.
Estabrook
, in Elie Cartan and Differential Geometry, special issue of
Symmetry, Integr. Geom.: Methods Appl.
4
,
63
(
2008
);
e-print arXiv:0809.2174v1.
18.
F. B.
Estabrook
, in
Global Integrability of Field Theories, Proceedings of GIFT 2006
, edited by
J.
Calmet
,
W. M.
Seiler
, and
R. W.
Tucker
(
Universitätsverlag Karlsruhe
,
Karlsruhe
,
2006
).
19.
H.
Stephani
,
D.
Kramer
,
M.
MacCallum
,
C.
Hoensellaers
, and
E.
Herlt
,
Exact Solutions to Einstein’s Field Equations
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2003
), Sec. 37.
20.
K. R.
Karmarkar
,
Proc. Indian Acad. Sci., Sect. A
27
,
56
(
1948
).
21.
M.
Ikeda
,
S.
Kitamura
, and
M.
Matsumoto
,
J. Math. Kyoto Univ.
3
,
71
(
1963
).
You do not currently have access to this content.