We report on a new computer study of the existence of d2 equiangular lines in d complex dimensions. Such maximal complex projective codes are conjectured to exist in all finite dimensions and are the underlying mathematical objects defining symmetric informationally complete measurements in quantum theory. We provide numerical solutions in all dimensions d67 and, moreover, a putatively complete list of Weyl–Heisenberg covariant solutions for d50. A symmetry analysis of this list leads to new algebraic solutions in dimensions d=24, 35, and 48, which are given together with algebraic solutions for d=4,,15, and 19.

1.
J.
Haantjes
,
Nieuw Arch. Wiskd.
22
,
355
(
1948
).
2.
J. H.
Van Lint
and
J. J.
Seidel
,
Proc. K. Ned. Akad. Wet., Ser. A: Math. Sci.
69
,
335
(
1966
).
3.
P. W. H.
Lemmens
and
J. J.
Seidel
,
J. Algebra
24
,
494
(
1973
).
4.
P.
Delsarte
,
J. M.
Goethals
, and
J. J.
Seidel
,
Philips Res. Rep.
30
,
91
(
1975
).
5.
P.
Delsarte
,
J. M.
Goethals
, and
J. J.
Seidel
,
Geom. Dedic.
6
,
363
(
1977
).
6.
E.
Bannai
and
E.
Bannai
,
Eur. J. Comb.
30
,
1392
(
2009
).
7.
J. M.
Renes
,
R.
Blume-Kohout
,
A. J.
Scott
, and
C. M.
Caves
,
J. Math. Phys.
45
,
2171
(
2004
).
8.
M.
Grassl
,
Proceedings of the 2004 ERATO Conference on Quantum Information Science
, Tokyo, September
2004
, pp.
60
61
;
9.
D. M.
Appleby
,
J. Math. Phys.
46
,
052107
(
2005
).
10.
M.
Grassl
,
Proceedings of the Workshop on Discrete Tomography and its Applications
, City University of New York, June
2005
M.
Grassl
[
Electron. Notes Discrete Math
.
20
,
151
(
2005
)].
11.
M.
Grassl
,
MAGMA 2006 Conference
, Technische Universität Berlin, July
2006
, available online: http://magma.maths.usyd.edu.au/Magma2006/.
12.
M.
Grassl
,
Seeking SICs: A Workshop on Quantum Frames and Designs
Perimeter Institute, Waterloo, October
2008
, available online: http://pirsa.org/08100069/.
13.
M.
Grassl
,
Lect. Notes Comput. Sci.
5393
,
89
(
2008
).
14.
A.
Klappenecker
,
M.
Rötteler
,
I.
Shparlinski
, and
A.
Winterhof
,
J. Math. Phys.
46
,
082104
(
2005
).
15.
S.
Colin
,
J.
Corbett
,
T.
Durt
,
D.
Gross
, and
S. I. C.
About
,
J. Opt. B: Quantum Semiclassical Opt.
7
,
S778
(
2005
).
16.
W. K.
Wootters
,
Found. Phys.
36
,
112
(
2006
).
17.
18.
19.
D. M.
Appleby
,
H. B.
Dang
, and
C. A.
Fuchs
, e-print arXiv:0707.2071v1 [quant-ph].
20.
A.
Belovs
, “
Welch bounds and quantum state tomography
,” M.Sc. thesis, University of Waterloo,
2008
, available online: http://hdl.handle.net/10012/4159.
21.
D. M.
Appleby
,
AIP Conf. Proc.
1101
,
223
(
2009
).
22.
C. A.
Fuchs
and
R.
Schack
, e-print arXiv:0906.2187v1 [quant-ph].
23.
I.
Bengtsson
and
H.
Granström
,
Open Syst. Inf. Dyn.
16
,
145
(
2009
).
24.
D. M.
Appleby
, e-print arXiv:0909.5233v1 [quant-ph].
25.
D. M.
Appleby
,
Å.
Ericsson
, and
C. A.
Fuchs
, e-print arXiv:0910.2750v1 [quant-ph].
26.
M.
Khatirinejad
,
J. Algebr. Comb.
28
,
333
(
2008
).
27.
C.
Godsil
and
A.
Roy
,
Eur. J. Comb.
30
,
246
(
2009
).
28.
S. D.
Howard
,
A. R.
Calderbank
, and
W.
Moran
,
EURASIP J. Appl. Signal Process.
2006
,
85685
(
2006
).
29.
S.
Waldron
and
L.
Bos
,
New Zealand J. Math.
36
,
113
(
2007
).
30.
M.
Fickus
,
J. Fourier Anal. Appl.
15
,
413
(
2009
).
31.
G.
Zauner
, “
Quantendesigns—Grundzüge einer nichtkommutativen Designtheorie (in German)
,” Ph.D. thesis,
University of Vienna
,
1999
, available online: http://www.mat.univie.ac.at/neum/papers/physpapers.html.
32.
S. G.
Hoggar
,
Geom. Dedic.
69
,
287
(
1998
).
33.
P.
Busch
,
P. J.
Lahti
, and
P.
Mittelstaedt
,
The Quantum Theory of Measurement
, 2nd ed. (
Springer-Verlag
,
Berlin
,
1996
).
34.
R. A.
Rankin
,
Proc. Glasgow Math. Assoc.
2
,
139
(
1955
).
35.
J. H.
Conway
and
N. J. A.
Sloane
,
Sphere Packings, Lattices and Groups
(
Springer-Verlag
,
New York
,
1988
).
36.
V.
Levenshtein
, in
Handbook of Coding Theory
, edited by
V.
Pless
and
C. W.
Huffman
(
Elsevier
,
Amsterdam
,
1998
), pp.
499
648
.
37.
P.
de la Harpe
and
C.
Pache
,
Infinite Groups: Geometric, Combinatorial and Dynamical Aspects
,
Progress in Mathematics
Vol.
248
(
Birkhäuser
,
Basel
,
2005
), pp.
219
267
.
38.
S. G.
Hoggar
,
Eur. J. Combin.
3
,
233
(
1982
).
39.
A.
Roy
and
A. J.
Scott
,
J. Math. Phys.
48
,
072110
(
2007
).
40.
J.
Kovačević
and
A.
Chebira
,
IEEE Signal Process. Mag.
24
,
86
(
2007
);
J.
Kovačević
and
A.
Chebira
,
IEEE Signal Process. Mag.
24
,
115
(
2007
).
41.
O.
Christensen
,
An Introduction to Frames and Riesz Bases
(
Birkhäuser
,
Boston
,
2003
).
42.
43.
P.
Busch
,
Int. J. Theor. Phys.
30
,
1217
(
1991
).
44.
H.
Weyl
,
The Theory of Groups and Quantum Mechanics
(
Dover
,
New York
,
1950
).
45.
J.
Schwinger
,
Proc. Natl. Acad. Sci. U.S.A.
46
,
570
(
1960
).
46.
In his doctoral dissertation (Ref. 31, p. 65), following the derivation of SIC-POVMs for dimensions 2,,7, Zauner made the following observation: “Die Beispiele für b=2,3,4,5,6,7 legen die folgende Vermutung nahe. Für alle b2 gibt es im ([b/3]+1)-dimensionalen Eigenraum zum Eigenwert 1 der b×b Matrix Z Vektoren, welche mit dem Ansatz (3.14) maximale Quantendesigns mit Grad 1 erzeugen. Für b=3m+2 gibt es im gleichdimensionalen Eigenraum zum Eigenwert α ebensolche Vektoren.” In the present context, this quotation can be translated as follows [Z is the transpose of Z, in fact, but we will follow Appleby (Ref. 9)]: “the examples for dimension d=2,3,4,5,6,7 give rise to the following conjecture. For all dimensions d2, the eigenspace of dimension d/3+1 with eigenvalue 1 of the d×d matrix Z [see Eq. (3.9)] contains fiducial vectors of a Weyl–Heisenberg covariant SIC-POVM. For d=3m+2, the eigenspace of the same dimension with eigenvalue e2πi/3 contains fiducial vectors as well.”
47.
R.
Berndt
and
R.
Schmidt
,
Elements of the Representation Theory of the Jacobi Group
(
Birkhäuser
,
Basel
,
1998
).
48.
49.
H. G.
Feichtinger
,
M.
Hazewinkel
,
N.
Kaiblinger
,
E.
Matusiak
, and
M.
Neuhauser
,
Q. J. Math.
59
,
15
(
2008
).
50.
L. R.
Welch
,
IEEE Trans. Inf. Theory
20
,
397
(
1974
).
51.
Solutions for fiducial vectors were found by minimizing the left hand side of Eq. (4.2), the cost function, until the bound on the right hand side was met. This was performed using the MATLAB® Optimization Toolbox™ (Ref. 54) with the cost function and its derivatives implemented in C and linked in. The solutions were then further refined to 38 digits with the multiprecision capabilities of PARI/GP (Ref. 55). A small number of AMD Opteron™ 252 dual-processor machines were used, though for a significant amount of time.
52.
See supplementary material at http://dx.doi.org/10.1063/1.3374022 for Appendixes A and B.
53.
In each dimension d, the current list of known PEC(d) orbits of fiducial vectors is considered complete when, upon initializing each trial to a random vector under the Haar measure, the search consecutively encounters 30(n+1) solutions that generate one of the n known orbits. Assuming each orbit is found with equal probability, the probability of missing an orbit is then no more than e30. Under this criteria, the list is complete for d47. In dimensions d=48,,50, we have encountered enough of the known orbits to be confident that our list is complete here also, but the computations are ongoing.
54.
MATLAB®, version 7.3, The MathWorks, Inc., Natick MA,
2006
.
55.
PARI/GP, version 2.3.4, The PARI Group, Bordeaux,
2008
, available online: http://pari.math.u-bordeaux.fr/.
56.
Note that when d is even, however, the subgroup of ESL2(Z2d) that defines S(ϕ)PEC(d) can have an order that is a multiple of |S(ϕ)|. We have chosen all stabilizer orders to double when treated as subgroups of ESL2(Z2d), e.g., |Fz|=2|[Fz0]|.
57.
See Ref. 17 (Conjecture 4) and note that Fz and JFzJ belong to different conjugacy classes in SL2(Zd¯) when 3d.
58.
D.
Gross
,
Seeking SICs: A Workshop on Quantum Frames and Designs
, Perimeter Institute, Waterloo, October
2008
, available online: http://pirsa.org/08100075/.
59.
E.
Lubkin
,
J. Math. Phys.
19
,
1028
(
1978
).
60.
W.
Bosma
,
J. J.
Cannon
, and
C.
Playoust
,
J. Symb. Comput.
24
,
235
(
1997
).
61.
When expressing the elements of the original number field in terms of radicals, we generally have to extend the field to one of larger degree. The information given in Table III is with respect to the original field.
62.
D. M.
Appleby
,
S. T.
Flammia
, and
C. A.
Fuchs
, e-print arXiv:1001.0004v1 [quant-ph].

Supplementary Material

You do not currently have access to this content.