The notion of charge deficiency by Avron et al. [“Charge deficiency, charge transport and comparison of dimensions,” Commun. Math. Phys.159, 399 (1994)] is studied from the view of K-theory of operator algebras and is applied to the Landau levels in R2n. We calculate the charge deficiencies at the higher Landau levels in R2n by means of an Atiyah–Singer-type index theorem.

1.
Atiyah
,
M. F.
, K-Theory,
Lecture Notes by D. W. Anderson
(
W. A. Benjamin
,
New York
,
1967
).
2.
Avron
,
J. E.
,
Seiler
,
R.
, and
Simon
,
B.
, “
Charge deficiency, charge transport and comparison of dimensions
,”
Commun. Math. Phys.
159
,
399
(
1994
).
3.
Berger
,
C. A.
and
Coburn
,
L. A.
, “
Toeplitz operators on the Segal-Bargmann space
,”
Trans. Am. Math. Soc.
301
,
813
(
1987
).
4.
Blackadar
,
B.
, K-Theory for Operator Algebras,
Mathematical Sciences Research Institute Publications
Vol.
5
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1998
).
5.
Boutet de Monvel
,
L.
, “
On the index of Toeplitz operators of several complex variables
,”
Invent. Math.
50
,
249
(
1978
).
6.
Brodzki
,
J.
,
Mathai
,
V.
,
Rosenberg
,
J.
, and
Szabo
,
R. J.
, “
D-branes, RR-fields, and duality on noncommutative manifolds
,”
Commun. Math. Phys.
277
,
643
(
2008
).
7.
Bruneau
,
V.
,
Pushnitski
,
A.
, and
Raikov
,
G.
, “
Spectral shift function in strong magnetic fields
,”
St. Petersburg Math. J.
16
,
181
(
2005
).
8.
Douglas
,
R. G.
,
Banach Algebra Techniques in the Theory of Toeplitz Operators
(
AMS
,
Providence
,
1972
).
9.
Folland
,
G. B.
,
Harmonic Analysis in Phase Space
,
Annals of Mathematics Studies
Vol.
122
(
Princeton University Press
,
Princeton, NJ
,
1989
).
10.
Guentner
,
E.
and
Higson
,
N.
, “
A note on Toeplitz operators
,”
Int. J. Math.
7
,
501
(
1996
).
11.
Knudsen-Jensen
,
K.
and
Thomsen
,
K.
, Elements of KK-Theory (
Birkhäuser
,
Boston
,
1991
).
12.
Melgaard
,
M.
and
Rozenblum
,
G.
,
Stationary Partial Differential Equations
,
Handbook of Differential Equations
Vol.
2
, edited by
Chipot
,
M.
and
Quittner
,
P.
(
Elsevier
,
Amsterdam
,
2005
), pp.
407
517
.
13.
Murphy
,
G. J.
, C-Algebras and Operator Theory (
Academic
,
Boston, MA
,
1990
).
14.
Reis
,
R. M. G.
and
Szabo
,
R. J.
, “
Geometric K-homology of flat D-branes
,”
Commun. Math. Phys.
266
,
71
(
2006
).
15.
Rosenberg
,
J.
and
Schochet
,
C.
, “
The classification of extensions of C-algebras
,”
Bull., New Ser., Am. Math. Soc.
4
,
105
(
1981
).
16.
Rozenblum
,
G.
and
Sobolev
,
A. V.
, “
Discrete spectrum distribution of the Landau operator perturbed by an expanding electric potential
,” e-print arXiv:0711.2158.
17.
Rozenblum
,
G.
and
Tashchiyan
,
G.
, “
On the spectral properties of the perturbed Landau Hamiltonian
,”
Commun. Partial Differ. Equ.
33
,
1048
(
2008
).
18.
Venugopalkrishna
,
U.
, “
Fredholm operators associated with strongly pseudoconvex domains in Cn
,”
J. Funct. Anal.
9
,
349
(
1972
).
You do not currently have access to this content.