The notion of charge deficiency by Avron et al. [“Charge deficiency, charge transport and comparison of dimensions,” Commun. Math. Phys. 159, 399 (1994)] is studied from the view of -theory of operator algebras and is applied to the Landau levels in . We calculate the charge deficiencies at the higher Landau levels in by means of an Atiyah–Singer-type index theorem.
REFERENCES
1.
Atiyah
, M. F.
, -Theory, Lecture Notes by D. W. Anderson
(W. A. Benjamin
, New York
, 1967
).2.
Avron
, J. E.
, Seiler
, R.
, and Simon
, B.
, “Charge deficiency, charge transport and comparison of dimensions
,” Commun. Math. Phys.
159
, 399
(1994
).3.
Berger
, C. A.
and Coburn
, L. A.
, “Toeplitz operators on the Segal-Bargmann space
,” Trans. Am. Math. Soc.
301
, 813
(1987
).4.
Blackadar
, B.
, -Theory for Operator Algebras, Mathematical Sciences Research Institute Publications
Vol. 5
, 2nd ed. (Cambridge University Press
, Cambridge
, 1998
).5.
Boutet de Monvel
, L.
, “On the index of Toeplitz operators of several complex variables
,” Invent. Math.
50
, 249
(1978
).6.
Brodzki
, J.
, Mathai
, V.
, Rosenberg
, J.
, and Szabo
, R. J.
, “-branes, RR-fields, and duality on noncommutative manifolds
,” Commun. Math. Phys.
277
, 643
(2008
).7.
Bruneau
, V.
, Pushnitski
, A.
, and Raikov
, G.
, “Spectral shift function in strong magnetic fields
,” St. Petersburg Math. J.
16
, 181
(2005
).8.
Douglas
, R. G.
, Banach Algebra Techniques in the Theory of Toeplitz Operators
(AMS
, Providence
, 1972
).9.
Folland
, G. B.
, Harmonic Analysis in Phase Space
, Annals of Mathematics Studies
Vol. 122
(Princeton University Press
, Princeton, NJ
, 1989
).10.
Guentner
, E.
and Higson
, N.
, “A note on Toeplitz operators
,” Int. J. Math.
7
, 501
(1996
).11.
Knudsen-Jensen
, K.
and Thomsen
, K.
, Elements of -Theory (Birkhäuser
, Boston
, 1991
).12.
Melgaard
, M.
and Rozenblum
, G.
, Stationary Partial Differential Equations
, Handbook of Differential Equations
Vol. 2
, edited by Chipot
, M.
and Quittner
, P.
(Elsevier
, Amsterdam
, 2005
), pp. 407
–517
.13.
Murphy
, G. J.
, -Algebras and Operator Theory (Academic
, Boston, MA
, 1990
).14.
Reis
, R. M. G.
and Szabo
, R. J.
, “Geometric -homology of flat -branes
,” Commun. Math. Phys.
266
, 71
(2006
).15.
Rosenberg
, J.
and Schochet
, C.
, “The classification of extensions of -algebras
,” Bull., New Ser., Am. Math. Soc.
4
, 105
(1981
).16.
Rozenblum
, G.
and Sobolev
, A. V.
, “Discrete spectrum distribution of the Landau operator perturbed by an expanding electric potential
,” e-print arXiv:0711.2158.17.
Rozenblum
, G.
and Tashchiyan
, G.
, “On the spectral properties of the perturbed Landau Hamiltonian
,” Commun. Partial Differ. Equ.
33
, 1048
(2008
).18.
Venugopalkrishna
, U.
, “Fredholm operators associated with strongly pseudoconvex domains in
,” J. Funct. Anal.
9
, 349
(1972
).© 2010 American Institute of Physics.
2010
American Institute of Physics
You do not currently have access to this content.