We analyze the convex structure of the set of positive operator valued measures (POVMs) representing quantum measurements on a given finite dimensional quantum system, with outcomes in a given locally compact Hausdorff space. The extreme points of the convex set are operator valued measures concentrated on a finite set of kd2 points of the outcome space, d< being the dimension of the Hilbert space. We prove that for second-countable outcome spaces any POVM admits a Choquet representation as the barycenter of the set of extreme points with respect to a suitable probability measure. In the general case, Krein–Milman theorem is invoked to represent POVMs as barycenters of a certain set of POVMs concentrated on kd2 points of the outcome space.

1.
Ali
,
S. T.
and
Englis
,
M.
, “
Quantization methods: A guide for physicists and analysts
,”
Rev. Math. Phys.
17
,
391
(
2005
).
2.
Arveson
,
W. B.
, “
Subalgebras of C-algebras
,”
Acta Math.
123
,
141
(
1969
).
3.
Belavkin
,
V. P.
and
Staszewski
,
P.
, “
A Radon-Nikodym theorem for completely positive maps
,”
Rep. Math. Phys.
24
,
49
(
1986
).
4.
Berberian
,
S. K.
,
Notes on Spectral Theory
(
Van Nostrand
,
Princeton
,
1966
).
5.
Bishop
,
E.
and
De Leeuw
,
K.
, “
The representation of linear functionals by measures on sets of extreme points
,”
Ann. Inst. Fourier
9
,
305
(
1959
).
6.
Busch
,
P.
,
Lathi
,
P.
, and
Mittelstaedt
,
P.
,
The Quantum Theory of Measurement
(
Springer
,
New York
,
1991
).
7.
Bužek
,
V.
,
Derka
,
R.
, and
Massar
,
S.
, “
Optimal quantum clocks
,”
Phys. Rev. Lett.
82
,
2207
(
1999
).
8.
Choquet
,
G.
, “
Existence et unicité des représentations intégrales au moyen des points extrémaux dans les cônes convexes
,”
Séminaire Bourbaki
4
, Exp. No.
139
(
1956
).
9.
Conway
,
J. B.
,
A Course in Functional Analysis
(
Springer-Verlag
,
New York
,
1985
).
10.
Chiribella
,
G.
,
D’Ariano
,
G. M.
,
Perinotti
,
P.
, and
Sacchi
,
M. F.
, “
Efficient use of quantum resources in the transmission of a reference frame
,”
Phys. Rev. Lett.
93
,
180503
(
2004
).
11.
Chiribella
,
G.
,
D’Ariano
,
G. M.
, and
Schlingemann
,
D. -M.
, “
How continuous-outcome measurements in finite dimensions are actually discrete
,”
Phys. Rev. Lett.
98
,
190403
(
2007
).
12.
D’Ariano
,
G. M.
,
Lo Presti
,
P.
, and
Perinotti
,
P.
, “
Classical randomness in quantum measurements
,”
J. Phys. A
38
,
5979
(
2005
).
13.
Davies
,
E. B.
,
The Quantum Theory of Open Systems
(
Academic
,
London
,
1976
).
14.
Davies
,
E. B.
and
Lewis
,
J. T.
, “
An operational approach to quantum probability
,”
Commun. Math. Phys.
17
,
239
(
1970
).
15.
Dunford
,
N.
and
Schwartz
,
J. T.
,
Linear Operators
(
Interscience
,
New York
,
1958
), p.
424
.
16.
Helstrom
,
C. W.
,
Quantum Detection and Estimation Theory
(
Academic
,
New York
,
1976
).
17.
Holevo
,
A. S.
,
Probabilistic and Statistical Aspects of a Quantum Theory
(
North-Holland
,
Amsterdam
,
1982
).
18.
Holevo
,
A. S.
, “
An analog of the statistical decision theory in the noncommutative probability theory
,”
Trans. Mosc. Math. Soc.
26
,
133
(
1972
).
19.
Holevo
,
A. S.
, “
Statistical definition of observable and the structure of statistical models
,”
Rep. Math. Phys.
22
,
385
(
1985
).
20.
Holevo
,
A. S.
, “
Covariant measurements and uncertainty relations
,”
Rep. Math. Phys.
16
,
385
(
1979
).
21.
Holevo
,
A. S.
, “
Bounds for the quantity of information transmitted by a quantum channel
,”
Probl. Inf. Transm.
9
,
177
(
1973
).
22.
Holevo
,
A. S.
,
Statistical Structure of Quantum Theory
, Lecture Notes in Physics M 67 (
Springer-Verlag
,
Berlin
2001
).
23.
Holevo
,
A. S.
, “
Radon-Nikodym derivatives of quantum instruments
,”
J. Math. Phys.
39
,
1373
(
1998
).
24.
Yuen
,
H. P.
and
Shapiro
,
J. H.
, “
Optical communication with two-photon coherent states–Part III: Quantum measurements realizable with photoemissive detectors
,”
IEEE Trans. Inf. Theory
26
,
78
(
1980
).
25.
Landsman
,
N. P.
,
Mathematical Topics between Classical and Quantum Mechanics
,
Springer Monographs in Mathematics
(
Springer-Verlag
,
New York
,
1998
).
26.
Ludwig
,
G.
, “
Versuch einer axiomatischen grundlegung der quantenmechanik und allgemeinerer physikalischer theorien
,”
Z. Phys.
181
,
233
(
1964
).
27.
Ozawa
,
M.
, “
Quantum measuring processes of continuous observables
,”
J. Math. Phys.
25
,
79
(
1984
).
28.
Paulsen
,
V. I.
,
Completely Bounded Maps and Dilations
,
Pitman Research Notes in Mathematics
Series No. 146 (
Longman Scientific and Technical
,
Harlow
/
Wiley
,
New York
,
1986
).
29.
Kelley
,
P. L.
and
Kleiner
,
W. H.
, “
Theory of electromagnetic field measurement and photoelectric counting
,”
Phys. Rev.
136
,
A316
(
1964
).
30.
Krein
,
M.
and
Krein
,
S.
, “
On an inner characteristic of the set of all continuous functions defined on a bicompact Hausdorff space
,”
C. R. Acad. Sci. URSS.
27
,
427
(
1940
).
31.
Parthasarathy
,
K. R.
, “
Extremal decision rules in quantum hypothesis testing
,”
Infinite Dimen. Anal., Quantum Probab., Relat. Top.
2
,
557
(
1999
).
32.
Stinespring
,
W. F.
, “
Positive functions on C-algebras
,”
Proc. Am. Math. Soc.
6
,
211
(
1955
).
33.
Störmer
,
E.
, in
Foundations of Quantum Mechanics and Ordered Linear Spaces
,
Lecture Notes in Physics
Vol.
29
, edited by
Hartkämper
,
A.
and
Neumann
,
H.
(
Springer Verlag
,
Berlin
,
1974
).
34.
Reed
,
M.
and
Simon
,
B.
,
Methods of Modern Mathematical Physics
(
Academic
,
London
,
1980
), Vol.
I
.
35.
Raginsky
,
M.
, “
Radon-Nikodym derivatives of quantum operations
,”
J. Math. Phys.
44
,
5003
(
2003
).
36.
Royden
,
H. L.
,
Real Analysis
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1988
).
37.
Urysohn
,
P.
, “
Zum Metrisationsproblem
,”
Math. Ann.
94
,
309
(
1925
).
38.
von Neumann
,
J.
,
Mathematical Foundations of Quantum Mechanics
(
Princeton University Press
,
Princeton, NJ
,
1955
).
39.
Wegge-Olsen
,
N. E.
, K-Theory and C-Algebras (
Oxford University Press
,
Oxford
,
1993
).
You do not currently have access to this content.