We analyze the convex structure of the set of positive operator valued measures (POVMs) representing quantum measurements on a given finite dimensional quantum system, with outcomes in a given locally compact Hausdorff space. The extreme points of the convex set are operator valued measures concentrated on a finite set of points of the outcome space, being the dimension of the Hilbert space. We prove that for second-countable outcome spaces any POVM admits a Choquet representation as the barycenter of the set of extreme points with respect to a suitable probability measure. In the general case, Krein–Milman theorem is invoked to represent POVMs as barycenters of a certain set of POVMs concentrated on points of the outcome space.
REFERENCES
1.
Ali
, S. T.
and Englis
, M.
, “Quantization methods: A guide for physicists and analysts
,” Rev. Math. Phys.
17
, 391
(2005
).2.
Arveson
, W. B.
, “Subalgebras of -algebras
,” Acta Math.
123
, 141
(1969
).3.
Belavkin
, V. P.
and Staszewski
, P.
, “A Radon-Nikodym theorem for completely positive maps
,” Rep. Math. Phys.
24
, 49
(1986
).4.
5.
Bishop
, E.
and De Leeuw
, K.
, “The representation of linear functionals by measures on sets of extreme points
,” Ann. Inst. Fourier
9
, 305
(1959
).6.
Busch
, P.
, Lathi
, P.
, and Mittelstaedt
, P.
, The Quantum Theory of Measurement
(Springer
, New York
, 1991
).7.
Bužek
, V.
, Derka
, R.
, and Massar
, S.
, “Optimal quantum clocks
,” Phys. Rev. Lett.
82
, 2207
(1999
).8.
Choquet
, G.
, “Existence et unicité des représentations intégrales au moyen des points extrémaux dans les cônes convexes
,” Séminaire Bourbaki
4
, Exp. No. 139
(1956
).9.
Conway
, J. B.
, A Course in Functional Analysis
(Springer-Verlag
, New York
, 1985
).10.
Chiribella
, G.
, D’Ariano
, G. M.
, Perinotti
, P.
, and Sacchi
, M. F.
, “Efficient use of quantum resources in the transmission of a reference frame
,” Phys. Rev. Lett.
93
, 180503
(2004
).11.
Chiribella
, G.
, D’Ariano
, G. M.
, and Schlingemann
, D. -M.
, “How continuous-outcome measurements in finite dimensions are actually discrete
,” Phys. Rev. Lett.
98
, 190403
(2007
).12.
D’Ariano
, G. M.
, Lo Presti
, P.
, and Perinotti
, P.
, “Classical randomness in quantum measurements
,” J. Phys. A
38
, 5979
(2005
).13.
14.
Davies
, E. B.
and Lewis
, J. T.
, “An operational approach to quantum probability
,” Commun. Math. Phys.
17
, 239
(1970
).15.
Dunford
, N.
and Schwartz
, J. T.
, Linear Operators
(Interscience
, New York
, 1958
), p. 424
.16.
17.
Holevo
, A. S.
, Probabilistic and Statistical Aspects of a Quantum Theory
(North-Holland
, Amsterdam
, 1982
).18.
Holevo
, A. S.
, “An analog of the statistical decision theory in the noncommutative probability theory
,” Trans. Mosc. Math. Soc.
26
, 133
(1972
).19.
Holevo
, A. S.
, “Statistical definition of observable and the structure of statistical models
,” Rep. Math. Phys.
22
, 385
(1985
).20.
Holevo
, A. S.
, “Covariant measurements and uncertainty relations
,” Rep. Math. Phys.
16
, 385
(1979
).21.
Holevo
, A. S.
, “Bounds for the quantity of information transmitted by a quantum channel
,” Probl. Inf. Transm.
9
, 177
(1973
).22.
Holevo
, A. S.
, Statistical Structure of Quantum Theory
, Lecture Notes in Physics M 67 (Springer-Verlag
, Berlin
2001
).23.
Holevo
, A. S.
, “Radon-Nikodym derivatives of quantum instruments
,” J. Math. Phys.
39
, 1373
(1998
).24.
Yuen
, H. P.
and Shapiro
, J. H.
, “Optical communication with two-photon coherent states–Part III: Quantum measurements realizable with photoemissive detectors
,” IEEE Trans. Inf. Theory
26
, 78
(1980
).25.
Landsman
, N. P.
, Mathematical Topics between Classical and Quantum Mechanics
, Springer Monographs in Mathematics
(Springer-Verlag
, New York
, 1998
).26.
Ludwig
, G.
, “Versuch einer axiomatischen grundlegung der quantenmechanik und allgemeinerer physikalischer theorien
,” Z. Phys.
181
, 233
(1964
).27.
Ozawa
, M.
, “Quantum measuring processes of continuous observables
,” J. Math. Phys.
25
, 79
(1984
).28.
Paulsen
, V. I.
, Completely Bounded Maps and Dilations
, Pitman Research Notes in Mathematics
Series No. 146 (Longman Scientific and Technical
, Harlow
/Wiley
, New York
, 1986
).29.
Kelley
, P. L.
and Kleiner
, W. H.
, “Theory of electromagnetic field measurement and photoelectric counting
,” Phys. Rev.
136
, A316
(1964
).30.
Krein
, M.
and Krein
, S.
, “On an inner characteristic of the set of all continuous functions defined on a bicompact Hausdorff space
,” C. R. Acad. Sci. URSS.
27
, 427
(1940
).31.
Parthasarathy
, K. R.
, “Extremal decision rules in quantum hypothesis testing
,” Infinite Dimen. Anal., Quantum Probab., Relat. Top.
2
, 557
(1999
).32.
Stinespring
, W. F.
, “Positive functions on -algebras
,” Proc. Am. Math. Soc.
6
, 211
(1955
).33.
Störmer
, E.
, in Foundations of Quantum Mechanics and Ordered Linear Spaces
, Lecture Notes in Physics
Vol. 29
, edited by Hartkämper
, A.
and Neumann
, H.
(Springer Verlag
, Berlin
, 1974
).34.
Reed
, M.
and Simon
, B.
, Methods of Modern Mathematical Physics
(Academic
, London
, 1980
), Vol. I
.35.
Raginsky
, M.
, “Radon-Nikodym derivatives of quantum operations
,” J. Math. Phys.
44
, 5003
(2003
).36.
37.
Urysohn
, P.
, “Zum Metrisationsproblem
,” Math. Ann.
94
, 309
(1925
).38.
von Neumann
, J.
, Mathematical Foundations of Quantum Mechanics
(Princeton University Press
, Princeton, NJ
, 1955
).39.
Wegge-Olsen
, N. E.
, K-Theory and -Algebras (Oxford University Press
, Oxford
, 1993
).© 2010 American Institute of Physics.
2010
American Institute of Physics
You do not currently have access to this content.