Two equations describing past marginally trapped surfaces in twisting algebraically special space–times are obtained. One of them generalizes the equation discussed by Tod for twist-free (Robinson–Trautman) metrics. The second one is solvable under certain algebraic conditions, closely related to “m > 0” and “

$m^2 > a^2$
m2>a2” of the Kerr metric. Consequences of the existence of a null horizon are discussed. Kerr–Schild metrics admitting such horizons are shown to be of Petrov- type D.

1.
P.
Tod
, “
Analogues of the past horizon in Robinson-Trautman space-times
,”
Class. Quantum Grav.
8
,
1
159 (
1989
).
2.
E. W. M.
Chow
and
A. W.-C.
Lun
, “
Apparent Horizons in Vacuum Robinson-Trautman Spacetimes
,”
J. Austral. Math. Soc. Ser. B
41
,
217
(
1999
), http://www.arxiv.org/abs/gr-qc/9503065.
3.
I.
Robinson
and
A.
Trautman
, “
Some spherical gravitational waves in general relativity
,”
Proc. R. Soc. London
,
Ser. A 265
,
463
(
1962
).
4.
A.
Ashtekar
and
B.
Krishnan
, “
Isolated and dynamical horizons and their applications
,”
Living Rev. Relativity
(online article) cited [2010/11/13 23:40:44]
7
(
2004
), http://www.livingreviews.org/lrr-2004-10.
5.
S. A.
Hayward
, “
Spin coefficient form of the new laws of black-hole dynamics
,”
Class. Quantum Grav.
11
,
3025
(
1994
), http://arxiv.org/abs/gr-qc/9406033/.
6.
D.
Kramer
,
M.
MacCallum
,
H.
Stephani
,
C.
Hoenselaers
, and
D.
Herlt
,
Exact Solutions to Einstein's Field Equations
, 2nd ed. (
Cambridge University Press
,
Cambridge, England
,
2003
).
7.
D.
Trim
and
J.
Wainwright
, “
Combined neutrino-gravitational fields in general relativity
,”
J. Math. Phys.
12
,
2494
(
1971
).
8.
D.
Trim
and
J.
Wainwright
, “
Combined neutrino-gravitational fields in general relativity
,”
J. Math. Phys.
12
,
2494
(
1971
).
9.
I.
Robinson
and
J. R.
Robinson
, “
Vacuum metrics without symmetry
,”
Int. J. Theor. Phys.
7
,
231
(
1969
).
10.
W.
Natorf
and
J.
Tafel
, “
Horizons in Robinson-Trautman space-times
,”
Class. Quantum Grav.
25
,
195012
(
2008
), http://arxiv.org/abs/0805.3978v1.
11.
R.
Debever
,
N.
Van den Bergh
, and
J.
Leroy
, “
Diverging Einstein-Maxwell null fields of petrov type d
,”
Class. Quantum Grav.
6
,
1373
(
1989
).
12.
P.
Wils
, “
Aligned pure radiation of type D does not exist
,”
Class. Quantum Grav.
7
,
1905
(
1990
).
13.
J.
Podolský
and
O.
Svítek
, “
Past horizons in Robinson-Trautman space-times with cosmological constant
,”
Phys. Rev. D
80
,
124042
(
2009
).
14.
J.
Lewandowski
and
T.
Pawłowski
, “
Geometric characterizations of the Kerr isolated horizon
,”
Int. J. Mod. Phys. D
11
,
739
(
2002
).
15.
R. P.
Kerr
, “
Discovering the Kerr and Kerr-Schild metrics
,” in
The Kerr Spacetime
, Eds.
D. L.
Wiltshire
,
M.
Visser
, and
S. M.
Scott
,
Cambridge Univ. Press,
Cambridge
,
2009
, http://lanl.arxiv.org/abs/0706.1109.
16.
G. J.
Weir
and
R. P.
Kerr
, “
Diverging type-D metrics
,”
Proc. R. Soc. London, Ser. A
355
,
31
(
1977
).
You do not currently have access to this content.