In the framework of Bell-polynomial manipulations, under investigation hereby are three single-field bilinearizable equations: the (1+1)-dimensional shallow water wave model, Boiti–Leon–Manna–Pempinelli model, and (2+1)-dimensional Sawada–Kotera model. Based on the concept of scale invariance, a direct and unifying Bell-polynomial scheme is employed to achieve the Bäcklund transformations and Lax pairs associated with those three soliton equations. Note that the Bell-polynomial expressions and Bell-polynomial-typed Bäcklund transformations for those three soliton equations can be, respectively, cast into the bilinear equations and bilinear Bäcklund transformations with symbolic computation. Consequently, it is also shown that the Bell-polynomial-typed Bäcklund transformations can be linearized into the corresponding Lax pairs.

1.
M. J.
Ablowitz
,
A.
Remani
, and
H.
Segur
,
J. Math. Phys.
21
,
715
(
1980
);
M. J.
Ablowitz
,
A.
Remani
, and
H.
Segur
,
J. Math. Phys.
21
,
1006
(
1980
);
M. J.
Ablowitz
and
P. A.
Clarkson
,
Solitons, Nonlinear Evolution Equations and Inverse Scattering
(
Cambridge University Press
,
Cambridge
,
1991
).
2.
X.
,
B.
Tian
,
T.
Xu
,
K. J.
Cai
, and
W. J.
Liu
,
Ann. Phys. (N.Y.)
323
,
2554
(
2008
);
X.
,
J.
Li
,
H. Q.
Zhang
,
T.
Xu
,
L. L.
Li
, and
B.
Tian
,
J. Math. Phys.
51
,
043511
(
2010
);
J.
Weiss
,
M.
Tabor
, and
G.
Carnevale
,
J. Math. Phys.
24
,
522
(
1983
);
J.
Weiss
,
J. Math. Phys.
25
,
2226
(
1984
);
P. A.
Clarkson
and
M. J.
Ablowitz
,
J. Math. Phys.
30
,
2201
(
1989
).
3.
R.
Hirota
,
The Direct Method in Soliton Theory
(
Cambridge University Press
,
Cambridge
,
2004
).
4.
R.
Hirota
and
J.
Satsuma
,
J. Phys. Soc. Jpn.
40
,
611
(
1976
).
5.
X.
,
T.
Geng
,
C.
Zhang
,
H. W.
Zhu
,
X. H.
Meng
, and
B.
Tian
,
Int. J. Mod. Phys. B
23
,
5003
(
2009
).
6.
X. B.
Hu
and
Y.
Li
,
Appl. Math. J. Chinese Univ. Ser. A
8
,
17
(
1993
) (in Chinese).
7.
X.
,
H. W.
Zhu
,
Z. Z.
Yao
,
X. H.
Meng
,
C.
Zhang
,
C. Y.
Zhang
, and
B.
Tian
,
Ann. Phys. (N.Y.)
323
,
1947
(
2008
);
X.
,
L. L.
Li
,
Z. Z.
Yao
,
T.
Geng
,
K. J.
Cai
,
C.
Zhang
, and
B.
Tian
,
Z. Naturforsch. A
64
,
222
(
2009
).
8.
E. T.
Bell
,
Ann. Math.
35
,
258
(
1934
).
9.
F.
Lambert
,
I.
Loris
,
J.
Springael
, and
R.
Willox
,
J. Phys. A
27
,
5325
(
1994
);
C.
Gilson
,
F.
Lambert
,
J.
Nimmo
, and
R.
Willox
,
Proc. R. Soc. London, Ser. A
452
,
223
(
1996
);
F.
Lambert
and
J.
Springael
,
Acta Appl. Math.
102
,
147
(
2008
).
10.
F.
Lambert
and
J.
Springael
,
J. Phys. Soc. Jpn.
66
,
2211
(
1997
);
F.
Lambert
and
J.
Springael
,
Chaos, Solitons Fractals
12
,
2821
(
2001
).
11.
C.
Rogers
and
W. F.
Shadwick
,
Bäcklund Transformations and Their Applications
(
Academic
,
New York
,
1982
).
12.
X.
,
H. W.
Zhu
,
X. H.
Meng
,
Z. C.
Yang
, and
B.
Tian
,
J. Math. Anal. Appl.
336
,
1305
(
2007
);
Z. Y.
Sun
,
Y. T.
Gao
,
X.
Yu
,
X. H.
Meng
, and
Y.
Liu
,
Wave Motion
46
,
511
(
2009
);
Y. T.
Gao
and
B.
Tian
,
Phys. Plasmas
13
,
112901
(
2006
);
Y. T.
Gao
and
B.
Tian
,
Europhys. Lett.
77
,
15001
(
2007
);
Y. T.
Gao
and
B.
Tian
,
Phys. Lett. A
361
,
523
(
2007
);
L.
Wang
,
Y. T.
Gao
, and
X. L.
Gai
,
Z. Naturforsch. A
65
,
818
(
2010
).
13.
A.
Biswas
,
D.
Milovic
, and
E.
Zerrad
,
Phys. Scr.
81
,
025506
(
2010
);
Z. Y.
Sun
,
Y. T.
Gao
,
X.
Yu
,
W. J.
Liu
, and
Y.
Liu
,
Phys. Rev. E
80
,
066608
(
2009
);
L.
Wang
,
Y. T.
Gao
, and
F. H.
Qi
,
J. Math. Anal. Appl.
,
372
,
110
(
2010
);
Z. Y.
Sun
,
Y. T.
Gao
,
X.
Yu
, and
Y.
Liu
,
Colloid Surface A
366
,
1
(
2010
);
L.
Wang
,
Y. T.
Gao
,
X. L.
Gai
, and
Z. Y.
Sun
,
Phys. Scr.
80
065017
(
2009
);
B.
Tian
and
Y. T.
Gao
,
Phys. Lett. A
362
,
283
(
2007
).
14.
B.
Tian
and
Y. T.
Gao
,
Chaos, Solitons Fractals
7
,
1497
(
1996
).
15.
P. G.
Estévez
and
S.
Leble
,
Inverse Probl.
11
,
925
(
1995
).
16.
C.
Rogers
,
W. K.
Schief
, and
M. P.
Stallybrass
,
Int. J. Non-Linear Mech.
30
,
223
(
1995
);
V. G.
Dubrovsky
and
Y. V.
Lisitsyn
,
Phys. Lett. A
295
,
198
(
2002
).
17.
B. G.
Konopelchenko
and
V. G.
Dubrovsky
,
Phys. Lett. A
102
,
15
(
1984
);
M. C.
Nucci
,
J. Phys. A
22
,
2897
(
1989
).
18.
M.
Boiti
,
J. J. P.
Leon
,
M.
Manna
, and
F.
Pempinelli
,
Inverse Probl.
2
,
271
(
1986
).
19.
C. Z.
Qu
,
Commun. Theor. Phys.
25
,
369
(
1996
).
20.
R. A.
Zait
,
Chaos, Solitons Fractals
15
,
673
(
2003
);
A. M.
Wazwaz
,
Appl. Math. Comput.
184
,
1002
(
2007
);
A. H.
Khater
,
D. K.
Callebaut
, and
S. M.
Sayed
,
J. Comput. Appl. Math.
189
,
387
(
2006
).
You do not currently have access to this content.