We provide a simple, unified proof of Birkhoff’s theorem for the vacuum and cosmological constant case, emphasizing its local nature. We discuss its implications for the maximal analytic extensions of Schwarzschild, Schwarzschild(–anti)-de Sitter, and Nariai spacetimes. In particular, we note that the maximal analytic extensions of extremal and overextremal Schwarzschild–de Sitter spacetimes exhibit no static region. Hence the common belief that Birkhoff’s theorem implies staticity is false for the case of positive cosmological constant. Instead, the correct point of view is that generalized Birkhoff’s theorems are local uniqueness theorems whose corollary is that locally spherically symmetric solutions of Einstein’s equations exhibit an additional local Killing vector field.

1.
G. D.
Birkhoff
,
Relativity and Modern Physics
(
Harvard University
,
Cambridge, MA
,
1923
), p.
253
.
2.
J. T.
Jebsen
,
Ark. Mat. Ast. Fys.
15
,
1
(
1921
).
3.
S.
Deser
and
J.
Franklin
,
Am. J. Phys.
73
,
261
(
2005
).
4.
N. Voje
Johansen
and
F.
Ravndal
,
Gen. Relativ. Grav.
38
,
537
(
2006
).
5.
J. T.
Jebsen
,
Gen. Relativ. Grav.
37
,
2253
(
2005
).
6.
S.
Deser
,
Gen. Relativ. Grav.
37
,
2251
(
2005
).
7.
8.
J.
Eiesland
,
Trans. Am. Math. Soc.
27
,
213
(
1925
).
9.
Birkhoff’s theorem is one of the corollaries to a theorem of Eiesland, which applies to Einstein spaces, not just the vacuum case. Although Ref. 8 was published in 1925, the result was communicated to the American Mathematical Society on March 26,
1921
;
see
J.
Eiesland
,
Am. Math. Soc. Bull.
27
,
410
(
1921
).
10.
B.
Hoffmann
,
Quart. J. Math.
3
,
226
(
1932
);
B.
Hoffmann
,
Quart. J. Math.
4
,
179
(
1933
).
11.
J. W.
Morrow-Jones
, “
Nonlinear theories of gravity: Solutions, symmetry and stability
,” Ph.D. thesis (UC Santa Barbara,
1988
), UMI-89-05295.
12.
J.
Morrow-Jones
and
D. M.
Witt
,
Phys. Rev. D
48
,
2516
(
1993
).
13.
14.
A. H.
Taub
,
Ann. Math.
53
,
472
(
1951
).
15.
H.
Goenner
,
Commun. Math. Phys.
16
,
34
(
1970
).
17.
H. J.
Schmidt
,
Grav. Cosmol.
3
,
185
(
1997
).
18.
P.
Severa
, e-print arXiv:gr-qc/0201068.
19.
K. A.
Bronnikov
and
V. N.
Melnikov
,
Gen. Relativ. Grav.
27
,
465
(
1995
).
20.
E.
Ayon-Beato
,
C.
Martinez
, and
J.
Zanelli
,
Phys. Rev. D
70
,
044027
(
2004
).
21.
Z.
Keresztes
and
L. A.
Gergely
,
Class. Quantum Grav.
25
,
165016
(
2008
).
22.
23.
K. D.
Krori
and
D.
Nandy
,
J. Phys. A
10
,
993
(
1977
).
24.
S.
Ramaswamy
and
P. B.
Yasskin
,
Phys. Rev. D
19
,
2264
(
1979
).
25.
D. E.
Neville
,
Phys. Rev. D
21
,
2770
(
1980
).
26.
R.
Rauch
and
H. T.
Nieh
,
Phys. Rev. D
24
,
2029
(
1981
).
27.
R. J.
Riegert
,
Phys. Rev. Lett.
53
,
315
(
1984
).
28.
D. L.
Wiltshire
,
Phys. Lett. B
169
,
36
(
1986
).
29.
30.
R.
Zegers
,
J. Math. Phys.
46
,
072502
(
2005
).
31.
S.
Deser
and
J.
Franklin
,
Class. Quantum Grav.
22
,
L103
(
2005
).
32.
H.
Maeda
and
M.
Nozawa
,
Phys. Rev. D
77
,
064031
(
2008
).
33.
M.
Bruni
,
C.
Germani
, and
R.
Maartens
,
Phys. Rev. Lett.
87
,
231302
(
2001
).
34.
J. W.
Moffat
and
V. T.
Toth
,
Mon. Not. R. Astron. Soc.
395
,
L25
(
2009
).
35.
D. C.
Dai
,
I.
Maor
, and
G. D.
Starkman
,
Phys. Rev. D
77
,
064016
(
2008
).
36.
J.
Ehlers
and
A.
Krasinski
,
Gen. Relativ. Grav.
38
,
1329
(
2006
).
37.
S. W.
Hawking
and
G. F. R.
Ellis
,
The Large Scale Structure of Space-Time
(
Cambridge University Press
,
Cambridge
,
1973
), Appendix B.
38.
For a precise definition of smooth manifold, see, for example,
M. W.
Hirsch
,
Differential Topology
(
Springer-Verlag
,
New York
,
1976
).
39.
G. W.
Gibbons
and
S. W.
Hawking
,
Phys. Rev. D
15
,
2738
(
1977
).
40.
K.
Lake
and
R. C.
Roeder
,
Phys. Rev. D
15
,
3513
(
1977
).
41.
K.
Lake
,
Class. Quantum Grav.
23
,
5883
(
2006
).
42.
J.
Podolsky
,
Gen. Relativ. Grav.
31
,
1703
(
1999
).
43.
H.
Nariai
,
Sci. Rep. Tohoku Univ., Series 1
34
,
160
(
1950
);
H.
Nariai
,
Sci. Rep. Tohoku Univ., Series 1
35
,
62
(
1951
).
You do not currently have access to this content.