We find a characterization of states satisfying equality in strong subadditivity of entropy and of Markov triplets on the CAR algebra. For even states, a more detailed structure of the density matrix is given.

1.
L.
Accardi
, “
On noncommutative Markov property
,”
Funct. Anal. Appl.
9
,
1
(
1975
).
2.
L.
Accardi
and
C.
Cecchini
, “
Conditional expectations in von Neumann algebras and a theorem of Takesaki
,”
J. Funct. Anal.
45
,
245
(
1982
).
3.
L.
Accardi
and
A.
Frigerio
, “
Markovian cocycles
,”
Math. Proc. R. Ir. Acad.
83
,
251
(
1983
).
4.
L.
Accardi
,
F.
Fidaleo
, and
F.
Mukhamedov
, “
Markov states and chains on the CAR algebra
,”
Infinite Dimen. Anal., Quantum Probab., Relat. Top.
10
,
165
(
2007
).
5.
H.
Araki
and
H.
Moriya
, “
Equilibrium statistical mechanics of fermion lattice systems
,”
Rev. Math. Phys.
15
,
93
(
2003
).
6.
J.
Pitrik
and
V. P.
Belavkin
, “
Notes on the equality in SSA of entropy on CAR algebra
,” http://arxiv.org/abs/math-ph/0602035, (
2006
).
7.
O.
Bratelli
and
D. W.
Robinson
,
Operator Algebras and Quantum Statistical Mechanics II
(
Springer-Verlag
,
Heidelberg
,
1981
).
8.
P.
Hayden
,
R.
Jozsa
,
D.
Petz
, and
A.
Winter
, “
Structure of states which satisfy strong subadditivity of quantum entropy with equality
,”
Commun. Math. Phys.
246
,
359
(
2004
).
9.
A.
Jenčová
and
D.
Petz
, “
Sufficiency in quantum statistical inference
,”
Commun. Math. Phys.
263
,
259
(
2006
).
10.
E. H.
Lieb
and
M. B.
Ruskai
, “
Proof of the strong subadditivity of quantum-mechanical entropy
,”
J. Math. Phys.
14
,
1938
(
1973
).
11.
H.
Moriya
, “
Markov property and strong additivity of von Neumann entropy for graded systems
,”
J. Math. Phys.
47
,
033510
(
2006
).
12.
M.
Ohya
and
D.
Petz
,
Quantum Entropy and Its Use
(
Springer-Verlag
,
Heidelberg
,
1993
).
13.
D.
Petz
, “
Sufficiency of channels over von Neumann algebras
,”
Quart. J. Math. Oxford
39
,
97
(
1988
).
You do not currently have access to this content.