We find a characterization of states satisfying equality in strong subadditivity of entropy and of Markov triplets on the CAR algebra. For even states, a more detailed structure of the density matrix is given.
REFERENCES
1.
L.
Accardi
, “On noncommutative Markov property
,” Funct. Anal. Appl.
9
, 1
(1975
).2.
L.
Accardi
and C.
Cecchini
, “Conditional expectations in von Neumann algebras and a theorem of Takesaki
,” J. Funct. Anal.
45
, 245
(1982
).3.
L.
Accardi
and A.
Frigerio
, “Markovian cocycles
,” Math. Proc. R. Ir. Acad.
83
, 251
(1983
).4.
L.
Accardi
, F.
Fidaleo
, and F.
Mukhamedov
, “Markov states and chains on the CAR algebra
,” Infinite Dimen. Anal., Quantum Probab., Relat. Top.
10
, 165
(2007
).5.
H.
Araki
and H.
Moriya
, “Equilibrium statistical mechanics of fermion lattice systems
,” Rev. Math. Phys.
15
, 93
(2003
).6.
J.
Pitrik
and V. P.
Belavkin
, “Notes on the equality in SSA of entropy on CAR algebra
,” http://arxiv.org/abs/math-ph/0602035, (2006
).7.
O.
Bratelli
and D. W.
Robinson
, Operator Algebras and Quantum Statistical Mechanics II
(Springer-Verlag
, Heidelberg
, 1981
).8.
P.
Hayden
, R.
Jozsa
, D.
Petz
, and A.
Winter
, “Structure of states which satisfy strong subadditivity of quantum entropy with equality
,” Commun. Math. Phys.
246
, 359
(2004
).9.
A.
Jenčová
and D.
Petz
, “Sufficiency in quantum statistical inference
,” Commun. Math. Phys.
263
, 259
(2006
).10.
E. H.
Lieb
and M. B.
Ruskai
, “Proof of the strong subadditivity of quantum-mechanical entropy
,” J. Math. Phys.
14
, 1938
(1973
).11.
H.
Moriya
, “Markov property and strong additivity of von Neumann entropy for graded systems
,” J. Math. Phys.
47
, 033510
(2006
).12.
M.
Ohya
and D.
Petz
, Quantum Entropy and Its Use
(Springer-Verlag
, Heidelberg
, 1993
).13.
D.
Petz
, “Sufficiency of channels over von Neumann algebras
,” Quart. J. Math. Oxford
39
, 97
(1988
).© 2010 American Institute of Physics.
2010
American Institute of Physics
You do not currently have access to this content.