For systems of partial differential equations (PDEs) with n3 independent variables, construction of nonlocally related PDE systems is substantially more complicated than is the situation for PDE systems with two independent variables. In particular, in the multidimensional situation, nonlocally related PDE systems can arise as nonlocally related subsystems as well as potential systems that follow from divergence-type or lower-degree conservation laws. The theory and a systematic procedure for the construction of such nonlocally related PDE systems is presented in Part I [A. F. Cheviakov and G. W. Bluman, J. Math. Phys.51, 103521 (2010)]. This paper provides many new examples of applications of nonlocally related systems in three and more dimensions, including new nonlocal symmetries, new nonlocal conservation laws, and exact solutions for various nonlinear PDE systems of physical interest.

1.
A. F.
Cheviakov
and
G. W.
Bluman
,
J. Math. Phys.
51
,
103521
(
2010
).
2.
G. W.
Bluman
and
A. F.
Cheviakov
,
J. Math. Phys.
46
,
123506
(
2005
).
3.
G. W.
Bluman
,
A. F.
Cheviakov
, and
N. M.
Ivanova
,
J. Math. Phys.
47
,
113505
(
2006
).
4.
G. W.
Bluman
and
S.
Kumei
,
J. Math. Phys.
28
,
307
(
1987
).
5.
G. W.
Bluman
and
P.
Doran-Wu
,
Acta Appl. Math.
2
,
79
(
1995
).
6.
A.
Ma
, “
Extended group analysis of the wave equation
,” M.Sc. thesis,
University of British Columbia
,
1991
.
7.
I. S.
Akhatov
,
R. K.
Gazizov
, and
N. H.
Ibragimov
,
Sov. Math. Dokl.
35
,
384
(
1987
).
8.
A.
Sjöberg
and
F. M.
Mahomed
,
Appl. Math. Comput.
150
,
379
(
2004
).
9.
G. W.
Bluman
,
A. F.
Cheviakov
, and
J. -F.
Ganghoffer
,
J. Eng. Math.
62
,
203
(
2008
).
10.
G. W.
Bluman
and
A. F.
Cheviakov
,
J. Math. Anal. Appl.
333
,
93
(
2007
).
11.
S. C.
Anco
and
G. W.
Bluman
,
J. Math. Phys.
38
,
3508
(
1997
).
12.
S. C.
Anco
and
D.
The
,
Acta Appl. Math.
89
,
1
(
2005
).
13.
A. F.
Cheviakov
and
S. C.
Anco
,
Phys. Lett. A
372
,
1363
(
2008
).
14.
A. F.
Cheviakov
,
Comput. Phys. Commun.
176
,
48
(
2007
).
15.
G. W.
Bluman
,
A. F.
Cheviakov
, and
S. C.
Anco
,
Applications of Symmetry Methods to Partial Differential Equations
,
Applied Mathematical Sciences
Vol.
168
(
Springer
,
New York
,
2010
).
16.
O. I.
Bogoyavlenskij
,
Phys. Lett. A
291
,
256
(
2001
).
18.
O.
Kelbin
,
A. F.
Cheviakov
, and
M.
Oberlack
(unpublished).
19.
O. I.
Bogoyavlenskij
,
Phys. Rev. E
62
,
8616
(
2000
).
20.
O. I.
Bogoyavlenskij
,
Phys. Rev. E
66
,
056410
(
2002
).
21.
A. F.
Cheviakov
,
Phys. Rev. Lett.
94
,
165001
(
2005
).
22.
K. I.
Ilin
and
V. A.
Vladimirov
,
Phys. Plasmas
11
,
3586
(
2004
).
23.
A. F.
Cheviakov
,
Phys. Lett. A
321
,
34
(
2004
).
24.
R.
Geroch
,
J. Math. Phys.
12
,
918
(
1971
).
25.
R.
Geroch
,
J. Math. Phys.
13
,
394
(
1972
).
26.
Note that system (5.3) contains only first-order PDEs. Normally, in the point symmetry analysis procedure, if all differential equations are of the same order, no differential consequences are used in symmetry determining equations. However, in PDE system (5.3), an important differential consequence of PDEs (5.4c) is divω=0. Without explicitly using this constraint, one misses infinite symmetries Y4 in (5.9) and Y3 in (5.14).
You do not currently have access to this content.