For many systems of partial differential equations (PDEs), including nonlinear ones, one can construct nonlocally related PDE systems. In recent years, such nonlocally related systems have proven to be useful in applications. In particular, they have yielded systematically nonlocal symmetries, nonlocal conservation laws, noninvertible linearizations, and new exact solutions for many different PDE systems of interest. However, the overwhelming majority of new results and theoretical understanding pertain only to PDE systems with two independent variables. The situation for PDE systems with more than two independent variables turns out to be much more complicated due to gauge freedom relating potential variables. The current paper, together with the companion paper [A. F. Cheviakov and G. W. Bluman, J. Math. Phys.51, 103522 (2010)], synthesizes and systematically extends known results for nonlocally related systems arising for multidimensional PDE systems, i.e., for PDE systems with three or more independent variables. The presented framework includes potential systems arising from lower-degree conservation laws of a given PDE system. Nonlocally related multidimensional PDE systems are discussed in terms of their construction, properties, and applications.

1.
A. F.
Cheviakov
and
G. W.
Bluman
,
J. Math. Phys.
51
,
103522
(
2010
).
2.
G. W.
Bluman
and
A. F.
Cheviakov
,
J. Math. Phys.
46
,
123506
(
2005
).
3.
G. W.
Bluman
,
A. F.
Cheviakov
, and
N. M.
Ivanova
,
J. Math. Phys.
47
,
113505
(
2006
).
4.
G. W.
Bluman
and
S.
Kumei
,
J. Math. Phys.
28
,
307
(
1987
).
5.
G. W.
Bluman
and
P.
Doran-Wu
,
Acta Appl. Math.
2
,
79
(
1995
).
6.
A.
Ma
, “
Extended group analysis of the wave equation
,” M.Sc. thesis,
University of British Columbia
,
1991
.
7.
I. S.
Akhatov
,
R. K.
Gazizov
, and
N. H.
Ibragimov
,
Sov. Math. Dokl.
35
,
384
(
1987
).
8.
A.
Sjöberg
and
F. M.
Mahomed
,
Appl. Math. Comput.
150
,
379
(
2004
).
9.
G. W.
Bluman
,
A. F.
Cheviakov
, and
J. -F.
Ganghoffer
,
J. Eng. Math.
62
,
203
(
2008
).
10.
G. W.
Bluman
and
A. F.
Cheviakov
,
J. Math. Anal. Appl.
333
,
93
(
2007
).
11.
S. C.
Anco
and
G. W.
Bluman
,
J. Math. Phys.
38
,
3508
(
1997
).
12.
S. C.
Anco
and
D.
The
,
Acta Appl. Math.
89
,
1
(
2005
).
13.
A. F.
Cheviakov
and
S. C.
Anco
,
Phys. Lett. A
372
,
1363
(
2008
).
14.
G. W.
Bluman
,
A. F.
Cheviakov
, and
S. C.
Anco
,
Applications of Symmetry Methods to Partial Differential Equations
,
Applied Mathematical Sciences
Vol.
168
(
Springer
,
New York
,
2010
).
15.
I. M.
Anderson
(unpublished) www.math.usu.edu/~fg_mp/Publications/VB/vb.pdf.
17.
I. M.
Anderson
and
N.
Kamran
,
Acta Appl. Math.
41
,
135
(
1995
).
18.
O. I.
Bogoyavlenskij
,
Phys. Lett. A
291
,
256
(
2001
).
20.
R.
Geroch
,
J. Math. Phys.
12
,
918
(
1971
);
R.
Geroch
,
J. Math. Phys.
13
,
394
(
1972
).
21.
S.
Anco
and
G.
Bluman
,
Phys. Rev. Lett.
78
,
2869
(
1997
).
22.
S.
Anco
and
G.
Bluman
,
EJAM
13
,
567
(
2002
).
23.
A. F.
Cheviakov
and
G. W.
Bluman
,
J. Math. Phys.
51
,
073502
(
2010
).
24.
M.
Kunzinger
and
R. O.
Popovych
,
J. Math. Phys.
49
,
103506
(
2008
).
25.
M.
Oberlack
and
A. F.
Cheviakov
,
J. Eng. Math.
66
,
121
(
2010
).
26.
I. M.
Anderson
and
C. G.
Torre
,
Phys. Rev. Lett.
77
,
4109
(
1996
).
27.
M.
Nakahara
,
Geometry, Topology and Physics
,
Graduate Student Series in Physics
(
Adam Hilger
,
Bristol
,
1990
).
28.
R. M.
Wald
,
J. Math. Phys.
31
,
2378
(
1990
).
29.
A. F.
Cheviakov
,
J. Eng. Math.
66
,
153
(
2010
).
You do not currently have access to this content.