A non-Hermitean extension of paradigmatic Wishart random matrices is introduced to set up a theoretical framework for statistical analysis of (real, complex, and real-quaternion) stochastic time series representing two “remote” complex systems. The first paper in a series provides a detailed spectral theory of non-Hermitean Wishart random matrices composed of complex valued entries. The great emphasis is placed on an asymptotic analysis of the mean eigenvalue density for which we derive, among other results, a complex-plane analog of the Marčenko–Pastur law. A surprising connection with a class of matrix models previously invented in the context of quantum chromodynamics is pointed out.

1.
Akemann
,
G.
, “
Matrix models and QCD with chemical potential
,”
Int. J. Mod. Phys. A
22
,
1077
1122
(
2007
).
2.
Akemann
,
G.
,
Bloch
,
J.
,
Shifrin
,
L.
, and
Wettig
,
T.
, “
Individual complex Dirac eigenvalue distributions from random matrix theory and comparison to quenched lattice QCD with a quark chemical potential
,”
Phys. Rev. Lett.
100
,
032002
(
2008
).
3.
Akemann
,
G.
and
Kanzieper
,
E.
, “
Integrable structure of Ginibre’s ensemble of real random matrices and a Pfaffian integration theorem
,”
J. Stat. Phys.
129
,
1159
1231
(
2007
).
4.
Akemann
,
G.
,
Osborn
,
J. C.
,
Splittorff
,
K.
, and
Verbaarschot
,
J. J. M.
, “
Unquenched QCD Dirac operator spectra at nonzero baryon chemical potential
,”
Nucl. Phys. B
712
,
287
324
(
2005
).
5.
Akemann
,
G.
,
Phillips
,
M. J.
, and
Shifrin
,
L.
, “
Gap probabilities in non-Hermitian random matrix theory
,”
J. Math. Phys.
50
,
063504
(
2009
).
6.
Andréief
,
C.
, “
Note sur une relation les int’egrales d’efinies des produits des functions
,”
Mém. de la Soc. Sci.
2
,
1
14
(
1883
).
7.
Bai
,
Z. D.
, “
Circular law
,”
Ann. Probab.
25
,
494
529
(
1997
).
8.
Barthélemy
,
M.
,
Gondran
,
B.
, and
Guichard
,
E.
, “
Large scale cross-correlations in Internet traffic
,”
Phys. Rev. E
66
,
056110
(
2002
).
9.
Basu
,
G.
,
Ray
,
K.
, and
Panigrahi
,
P. K.
, “
Random matrix route to image denoising
,” e-print arXiv:1004.1356 (
2010
).
10.
Biely
,
C.
and
Thurner
,
S.
, “
Random matrix ensembles of time-lagged correlation matrices: Derivation of eigenvalue spectra and analysis of financial time-series
,”
Quant. Finance
8
,
705
722
(
2008
).
11.
Bouchaud
,
J. -P.
and
Potters
,
M.
, “
Financial applications of random matrix theory: A short review
,” e-print arXiv:0910.1205 (
2009
).
12.
Burda
,
Z.
,
Janik
,
R. A.
, and
Waclaw
,
B.
, “
Spectrum of the product of independent random Gaussian matrices
,”
Phys. Rev. E
81
,
041132
(
2010
).
13.
Chau
,
L. -L.
and
Zaboronsky
,
O.
, “
On the structure of correlation functions in the normal matrix model
,”
Commun. Math. Phys.
196
,
203
247
(
1998
).
14.
de Bruijn
,
N. G.
, “
On some multiple integrals involving determinants
,”
J. Indian Math. Soc., New Ser.
19
,
133
151
(
1955
).
15.
Dyson
,
F. J.
, “
Distribution of eigenvalues for a class of real symmetric matrices
,”
Rev. Mex. Fis.
20
,
231
237
(
1971
).
16.
Fyodorov
,
Y. V.
, “
Negative moments of characteristic polynomials of random matrices: Ingham-Siegel integral as an alternative to Hubbard-Stratonovich transformation
,”
Nucl. Phys. B
621
,
643
674
(
2002
).
17.
Ginibre
,
J.
, “
Statistical ensembles of complex, quaternion, and real matrices
,”
J. Math. Phys.
6
,
440
449
(
1965
).
18.
Girko
,
V. L.
, “
Circular law
,”
Theory Probab. Appl.
29
,
694
706
(
1985
).
19.
Girko
,
V. L.
, “
Elliptic law
,”
Theory Probab. Appl.
30
,
677
690
(
1986
).
20.
Hua
,
L. K.
,
Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains
(
American Mathematical Society
,
Providence, RI
,
1963
).
21.
Ingham
,
A. E.
, “
An integral which occurs in statistics
,”
Proc. Cambridge Philos. Soc.
29
,
271
276
(
1933
).
22.
Janik
,
R. A.
and
Nowak
,
M. A.
, “
Wishart and anti-Wishart random matrices
,”
J. Phys. A
36
,
3629
3637
(
2003
).
23.
Kanzieper
,
E.
, in
Frontiers in Field Theory
, edited by
Kovras
,
O.
(
Nova Science
,
New York
,
2005
).
24.
Kwapień
,
J.
,
Drożdż
,
S.
,
Górski
,
A. Z.
, and
Oświȩcimka
,
P.
, “
Asymmetric matrices in an analysis of financial correlations
,”
Acta Phys. Pol. B
37
,
3039
3048
(
2006
).
25.
Kwapień
,
J.
,
Drożdż
,
S.
, and
Ioannides
,
A. A.
, “
Temporal correlations versus noise in the correlation matrix formalism: An example of the brain auditory response
,”
Phys. Rev. E
62
,
5557
5564
(
2000
).
26.
Kwapień
,
J.
,
Drożdż
,
S.
,
Liu
,
L. C.
, and
Ioannides
,
A. A.
, “
Cooperative dynamics in auditory brain response
,”
Phys. Rev. E
58
,
6359
6367
(
1998
).
27.
Laloux
,
L.
,
Cizeau
,
P.
,
Bouchaud
,
J. -P.
, and
Potters
,
M.
, “
Noise dressing of financial correlation matrices
,”
Phys. Rev. Lett.
83
,
1467
1470
(
1999
).
28.
Marčenko
,
V. A.
and
Pastur
,
L. A.
, “
Distribution of eigenvalues for some sets of random matrices
,”
Math. USSR Sb.
1
,
457
483
(
1967
).
29.
Mehta
,
M. L.
, “
A note on certain multiple integrals
,”
J. Math. Phys.
17
,
2198
2202
(
1976
).
30.
Mehta
,
M. L.
,
Random Matrices
(
Elsevier
,
Amsterdam
,
2004
).
31.
Muirhead
,
R. J.
,
Aspects of Multivariate Statistical Theory
(
Wiley
,
New York
,
1982
).
32.
Olver
,
F. W. J.
,
Asymptotics and Special Functions
(
Academic
,
New York
,
1974
).
33.
Olver
,
F. W. J.
,
Lozier
,
D. W.
,
Boisvert
,
R. F.
, and
Clark
,
C. W.
,
NIST Handbook of Mathematical Functions
(
Cambridge University Press
,
Cambridge
,
2010
).
34.
Osborn
,
J. C.
, “
Universal results from an alternate random-matrix model for QCD with a baryon chemical potential
,”
Phys. Rev. Lett.
93
,
222001
(
2004
).
35.
Plerou
,
V.
,
Gopikrishnan
,
P.
,
Rosenow
,
B.
,
Amaral
,
L. A. N.
,
Guhr
,
T.
, and
Stanley
,
H. E.
, “
A random matrix approach to cross-correlations in financial data
,”
Phys. Rev. E
65
,
066126
(
2002
).
36.
Plerou
,
V.
,
Gopikrishnan
,
P.
,
Rosenow
,
B.
,
Amaral
,
L. A. N.
, and
Stanley
,
H. E.
, “
Universal and non-universal properties of cross-correlations in financial time series
,”
Phys. Rev. Lett.
83
,
1471
1474
(
1999
).
37.
Plerou
,
V.
,
Gopikrishnan
,
P.
,
Rosenow
,
B.
,
Amaral
,
L. A. N.
, and
Stanley
,
H. E.
, “
A random matrix theory approach to financial cross-correlations
,”
Physica A
287
,
374
382
(
2000
).
38.
Santhanam
,
M. S.
and
Patra
,
P. K.
, “
Statistics of atmospheric correlations
,”
Phys. Rev. E
64
,
016102
(
2001
).
39.
Šeba
,
P.
, “
Random matrix analysis of human EEG data
,”
Phys. Rev. Lett.
91
,
198104
(
2003
).
40.
Siegel
,
C. L.
, “
Uber der analytische theorie der quadratischen Formen
,”
Ann. Math.
36
,
527
606
(
1935
).
41.
Wishart
,
J.
, “
The generalised product moment distribution in samples from a normal multivariate populations
,”
Biometrika
20A
,
32
52
(
1928
).
42.
Zabrodin
,
A.
and
Wiegmann
,
P.
, “
Large-N expansion for the 2D Dyson gas
,”
J. Phys. A
39
,
8933
8963
(
2006
).
You do not currently have access to this content.