A non-Hermitean extension of paradigmatic Wishart random matrices is introduced to set up a theoretical framework for statistical analysis of (real, complex, and real-quaternion) stochastic time series representing two “remote” complex systems. The first paper in a series provides a detailed spectral theory of non-Hermitean Wishart random matrices composed of complex valued entries. The great emphasis is placed on an asymptotic analysis of the mean eigenvalue density for which we derive, among other results, a complex-plane analog of the Marčenko–Pastur law. A surprising connection with a class of matrix models previously invented in the context of quantum chromodynamics is pointed out.
REFERENCES
1.
Akemann
, G.
, “Matrix models and QCD with chemical potential
,” Int. J. Mod. Phys. A
22
, 1077
–1122
(2007
).2.
Akemann
, G.
, Bloch
, J.
, Shifrin
, L.
, and Wettig
, T.
, “Individual complex Dirac eigenvalue distributions from random matrix theory and comparison to quenched lattice QCD with a quark chemical potential
,” Phys. Rev. Lett.
100
, 032002
(2008
).3.
Akemann
, G.
and Kanzieper
, E.
, “Integrable structure of Ginibre’s ensemble of real random matrices and a Pfaffian integration theorem
,” J. Stat. Phys.
129
, 1159
–1231
(2007
).4.
Akemann
, G.
, Osborn
, J. C.
, Splittorff
, K.
, and Verbaarschot
, J. J. M.
, “Unquenched QCD Dirac operator spectra at nonzero baryon chemical potential
,” Nucl. Phys. B
712
, 287
–324
(2005
).5.
Akemann
, G.
, Phillips
, M. J.
, and Shifrin
, L.
, “Gap probabilities in non-Hermitian random matrix theory
,” J. Math. Phys.
50
, 063504
(2009
).6.
Andréief
, C.
, “Note sur une relation les int’egrales d’efinies des produits des functions
,” Mém. de la Soc. Sci.
2
, 1
–14
(1883
).7.
Bai
, Z. D.
, “Circular law
,” Ann. Probab.
25
, 494
–529
(1997
).8.
Barthélemy
, M.
, Gondran
, B.
, and Guichard
, E.
, “Large scale cross-correlations in Internet traffic
,” Phys. Rev. E
66
, 056110
(2002
).9.
Basu
, G.
, Ray
, K.
, and Panigrahi
, P. K.
, “Random matrix route to image denoising
,” e-print arXiv:1004.1356 (2010
).10.
Biely
, C.
and Thurner
, S.
, “Random matrix ensembles of time-lagged correlation matrices: Derivation of eigenvalue spectra and analysis of financial time-series
,” Quant. Finance
8
, 705
–722
(2008
).11.
Bouchaud
, J. -P.
and Potters
, M.
, “Financial applications of random matrix theory: A short review
,” e-print arXiv:0910.1205 (2009
).12.
Burda
, Z.
, Janik
, R. A.
, and Waclaw
, B.
, “Spectrum of the product of independent random Gaussian matrices
,” Phys. Rev. E
81
, 041132
(2010
).13.
Chau
, L. -L.
and Zaboronsky
, O.
, “On the structure of correlation functions in the normal matrix model
,” Commun. Math. Phys.
196
, 203
–247
(1998
).14.
de Bruijn
, N. G.
, “On some multiple integrals involving determinants
,” J. Indian Math. Soc., New Ser.
19
, 133
–151
(1955
).15.
Dyson
, F. J.
, “Distribution of eigenvalues for a class of real symmetric matrices
,” Rev. Mex. Fis.
20
, 231
–237
(1971
).16.
Fyodorov
, Y. V.
, “Negative moments of characteristic polynomials of random matrices: Ingham-Siegel integral as an alternative to Hubbard-Stratonovich transformation
,” Nucl. Phys. B
621
, 643
–674
(2002
).17.
Ginibre
, J.
, “Statistical ensembles of complex, quaternion, and real matrices
,” J. Math. Phys.
6
, 440
–449
(1965
).18.
Girko
, V. L.
, “Circular law
,” Theory Probab. Appl.
29
, 694
–706
(1985
).19.
Girko
, V. L.
, “Elliptic law
,” Theory Probab. Appl.
30
, 677
–690
(1986
).20.
Hua
, L. K.
, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains
(American Mathematical Society
, Providence, RI
, 1963
).21.
Ingham
, A. E.
, “An integral which occurs in statistics
,” Proc. Cambridge Philos. Soc.
29
, 271
–276
(1933
).22.
Janik
, R. A.
and Nowak
, M. A.
, “Wishart and anti-Wishart random matrices
,” J. Phys. A
36
, 3629
–3637
(2003
).23.
Kanzieper
, E.
, in Frontiers in Field Theory
, edited by Kovras
, O.
(Nova Science
, New York
, 2005
).24.
Kwapień
, J.
, Drożdż
, S.
, Górski
, A. Z.
, and Oświȩcimka
, P.
, “Asymmetric matrices in an analysis of financial correlations
,” Acta Phys. Pol. B
37
, 3039
–3048
(2006
).25.
Kwapień
, J.
, Drożdż
, S.
, and Ioannides
, A. A.
, “Temporal correlations versus noise in the correlation matrix formalism: An example of the brain auditory response
,” Phys. Rev. E
62
, 5557
–5564
(2000
).26.
Kwapień
, J.
, Drożdż
, S.
, Liu
, L. C.
, and Ioannides
, A. A.
, “Cooperative dynamics in auditory brain response
,” Phys. Rev. E
58
, 6359
–6367
(1998
).27.
Laloux
, L.
, Cizeau
, P.
, Bouchaud
, J. -P.
, and Potters
, M.
, “Noise dressing of financial correlation matrices
,” Phys. Rev. Lett.
83
, 1467
–1470
(1999
).28.
Marčenko
, V. A.
and Pastur
, L. A.
, “Distribution of eigenvalues for some sets of random matrices
,” Math. USSR Sb.
1
, 457
–483
(1967
).29.
Mehta
, M. L.
, “A note on certain multiple integrals
,” J. Math. Phys.
17
, 2198
–2202
(1976
).30.
31.
Muirhead
, R. J.
, Aspects of Multivariate Statistical Theory
(Wiley
, New York
, 1982
).32.
33.
Olver
, F. W. J.
, Lozier
, D. W.
, Boisvert
, R. F.
, and Clark
, C. W.
, NIST Handbook of Mathematical Functions
(Cambridge University Press
, Cambridge
, 2010
).34.
Osborn
, J. C.
, “Universal results from an alternate random-matrix model for QCD with a baryon chemical potential
,” Phys. Rev. Lett.
93
, 222001
(2004
).35.
Plerou
, V.
, Gopikrishnan
, P.
, Rosenow
, B.
, Amaral
, L. A. N.
, Guhr
, T.
, and Stanley
, H. E.
, “A random matrix approach to cross-correlations in financial data
,” Phys. Rev. E
65
, 066126
(2002
).36.
Plerou
, V.
, Gopikrishnan
, P.
, Rosenow
, B.
, Amaral
, L. A. N.
, and Stanley
, H. E.
, “Universal and non-universal properties of cross-correlations in financial time series
,” Phys. Rev. Lett.
83
, 1471
–1474
(1999
).37.
Plerou
, V.
, Gopikrishnan
, P.
, Rosenow
, B.
, Amaral
, L. A. N.
, and Stanley
, H. E.
, “A random matrix theory approach to financial cross-correlations
,” Physica A
287
, 374
–382
(2000
).38.
Santhanam
, M. S.
and Patra
, P. K.
, “Statistics of atmospheric correlations
,” Phys. Rev. E
64
, 016102
(2001
).39.
Šeba
, P.
, “Random matrix analysis of human EEG data
,” Phys. Rev. Lett.
91
, 198104
(2003
).40.
Siegel
, C. L.
, “Uber der analytische theorie der quadratischen Formen
,” Ann. Math.
36
, 527
–606
(1935
).41.
Wishart
, J.
, “The generalised product moment distribution in samples from a normal multivariate populations
,” Biometrika
20A
, 32
–52
(1928
).42.
Zabrodin
, A.
and Wiegmann
, P.
, “Large- expansion for the Dyson gas
,” J. Phys. A
39
, 8933
–8963
(2006
).© 2010 American Institute of Physics.
2010
American Institute of Physics
You do not currently have access to this content.