This paper is an overview of the concept of complementarity, the relation to state estimation, to Connes–Størmer conditional (or relative) entropy, and to uncertainty relation. Complementary Abelian and noncommutative subalgebras are analyzed. All the known results about complementary decompositions are described and several open questions are included. The paper contains only few proofs, typically references are given.

1.
Accardi
,
L.
, “
Some trends and problems in quantum probability
,”
Lect. Notes Math.
1055
,
1
(
1984
).
2.
Bagan
,
E.
,
Ballester
,
M. A.
,
Gill
,
R. D.
,
Monras
,
A.
, and
Munoz-Tapia
,
R.
, “
Optimal full estimation of qubit mixed states
,”
Phys. Rev. A
73
,
032301
(
2006
).
3.
Baier
,
T.
and
Petz
,
D.
,
Rep. Math. Phys.
(in press).
4.
Bandyopadhyay
,
S.
,
Boykin
,
P. O.
,
Roychowdhury
,
V.
, and
Vatan
,
F.
, “
A new proof for the existence of mutually unbiased bases
,”
Algorithmica
34
,
512
(
2002
).
5.
Bruβ
,
D.
, “
Optimal eavesdropping in quantum cryptography with six states
,”
Phys. Rev. Lett.
81
,
3018
(
1998
).
6.
Busch
,
P.
and
Lahti
,
P. J.
, “
The complementarity of quantum observables: theory and experiment
,”
Riv. Nuovo Cim.
18
,
1
(
1995
).
7.
Cassinelli
,
G.
and
Varadarajan
,
V. S.
, “
On Accardi’s notion of complementary observables
,”
Infinite Dimen. Anal., Quantum Probab., Relat. Top.
5
,
135
(
2002
).
8.
Choda
,
M.
, “
Relative entropy for maximal Abelian subalgebras of matrices and the entropy of antistochastic matrices
,”
Int. J. Math.
19
,
767
(
2008
).
9.
Connes
,
A.
and
Størmer
,
E.
, “
Entropy of II1 von Neumann algebras
,”
Acta Math.
134
,
289
(
1975
).
10.
D’Ariano
,
G. M.
,
Paris
,
M. G. A.
, and
Sacchi
,
M. F.
, “
Quantum tomography
,”
Adv. Imaging Electron Phys.
128
,
205
(
2003
).
11.
Fischer
,
D. G.
and
Freyberger
,
M.
, “
Estimating mixed quantum states
,”
Phys. Lett. A
273
,
293
(
2000
).
12.
Kraus
,
K.
, “
Complementary observables and uncertainty relations
,”
Phys. Rev. D
35
,
3070
(
1987
).
13.
Krishna
,
M.
and
Parthasarathy
,
K. R.
, “
An entropic uncertainty principle for quantum measurements
,”
Sankhya: Indian J. Statistics
64
,
842
(
2002
).
14.
Maassen
,
H.
and
Uffink
,
I.
, “
Generalized entropic uncertainty relations
,”
Phys. Rev. Lett.
60
,
1103
(
1988
).
15.
Nathanson
,
M.
and
Ruskai
,
M. B.
, “
Pauli diagonal channels constant on axes
,”
J. Phys. A: Math. Theor.
40
,
8171
(
2007
).
16.
von Neumann
,
J.
,
Mathematische Grundlagen der Quantenmechanik
(
Springer
,
Berlin
,
1981
).
17.
Neshveyev
,
S.
and
Størmer
,
E.
,
Dynamical Entropy in Operator Algebras
(
Springer-Verlag
,
Berlin
,
2006
).
18.
Ohno
,
H.
, “
Quasi-orthogonal subalgebras of matrix algebras
,”
Linear Algebr. Appl.
429
,
2146
(
2008
).
19.
Ohno
,
H.
,
Petz
,
D.
, and
Szántó
,
A.
, “
Quasi-orthogonal subalgebras of 4×4 matrices
,”
Linear Algebr. Appl.
425
,
109
(
2007
).
20.
Ohno
,
H.
and
Petz
,
D.
, “
Generalizations of Pauli channels
,”
Acta Math. Hung.
124
,
165
(
2009
).
21.
Ohya
,
M.
and
Petz
,
D.
,
Quantum Entropy and Its Use
(
Springer-Verlag
,
Heidelberg
,
1993
);
Quantum Entropy and Its Use
, 2nd ed. (
Springer-Verlag
,
Heidelberg
,
2004
).
22.
Oppenheim
,
J.
,
Horodecki
,
K.
,
Horodecki
,
M.
,
Horodecki
,
P.
, and
Horodecki
,
R.
, “
A new type of complementarity between quantum and classical information
,”
Phys. Rev. A
68
,
022307
(
2003
).
23.
Pauli
,
W.
,
General Principles of Quantum Mechanics
(
Springer
,
Berlin
,
1980
).
24.
Petz
,
D.
, “
Complementarity in quantum systems
,”
Rep. Math. Phys.
59
,
209
(
2007
).
25.
Petz
,
D.
, “
Complementary subalgebras. Problems to solve
,”
Annales Univ. Sci. Budapest. Sect. Math.
51
,
117
(
2008
).
26.
Petz
,
D.
,
Hangos
,
K. M.
,
Szántó
,
A.
, and
Szöllősi
,
F.
, “
State tomography for two qubits using reduced densities
,”
J. Phys. A
39
,
10901
(
2006
).
27.
Petz
,
D.
,
Hangos
,
K. M.
, and
Magyar
,
A.
, “
Point estimation of states of finite quantum systems
,”
J. Phys. A
40
,
7955
(
2007
).
28.
Petz
,
D.
and
Kahn
,
J.
, “
Complementary reductions for two qubits
,”
J. Math. Phys.
48
,
012107
(
2007
).
29.
Petz
,
D.
,
Szántó
,
A.
, and
Weiner
,
M.
, “
Complementarity and the algebraic structure of 4-level quantum systems
,”
J. Infin. Dim. Analysis Quantum Prob.
12
,
99
(
2009
).
30.
Petz
,
D.
and
Ruppert
,
L.
(unpublished).
31.
Pittenger
,
A. O.
and
Rubin
,
M. H.
, “
Mutually unbiased bases, generalized spin matrices and separability
,”
Linear Algebr. Appl.
390
,
255
(
2004
).
32.
Popa
,
S.
, “
Orthogonal pairs of *-subalgebras in finite von Neumann algebras
,”
J. Oper. Theory
9
,
253
(
1983
).
33.
Rastegin
,
A. E.
, “
Statement of uncertainty principle for quantum measurements in terms of the Rényi entropies
,” e-print arXiv:0807.2691.
34.
Rédei
,
M.
,
Quantum Logic in Algebraic Approach, Fundamental Theories of Physics
(
Kluwer Academic
,
Dordrecht
,
1998
), Vol.
91
.
35.
Schwinger
,
J.
, “
Unitary operator bases
,”
Proc. Natl. Acad. Sci. U.S.A.
46
,
570
(
1960
).
36.
Tadej
,
W.
and
Zyczkowski
,
K.
, “
A concise guide to complex Hadamard matrices
,”
Open Syst. Inf. Dyn.
13
,
133
(
2006
).
37.
Watatani
,
Y.
and
Wierzbicki
,
J.
, “
Commuting squares and relative entropy for two subfactors
,”
J. Funct. Anal.
133
,
329
(
1995
).
38.
Wehner
,
S.
and
Winter
,
A.
, “
Entropic uncertainty relations–A survey
,” e-print arXiv:0907.3704.
39.
Weiner
,
M.
, “
A gap for the maximum number of mutually unbiased bases
,” e-print arXiv:0902.0635.
40.
Wootters
,
W. K.
and
Fields
,
B. D.
, “
Optimal state determination by mutually unbiased measurements
,”
Ann. Phys.
191
,
363
(
1989
).
41.
Weyl
,
H.
,
Theory of Groups and Quantum Mechanics
(
Methuen
,
London
,
1931
).
You do not currently have access to this content.