We introduce a unital associative algebra A associated with degenerate CP1. We show that A is a commutative algebra and whose Poincaré series is given by the number of partitions. Thereby, we can regard A as a smooth degeneration limit of the elliptic algebra introduced by Feigin and Odesskii [Int. Math. Res. Notices11, 531 (1997)]. Then we study the commutative family of the Macdonald difference operators acting on the space of symmetric functions. A canonical basis is proposed for this family by using A and the Heisenberg representation of the commutative family studied by Shiraishi [ Commun. Math. Phys.263, 439 (2006)]. It is found that the Ding–Iohara algebra [Lett. Math. Phys.41, 183 (1997)] provides us with an algebraic framework for the free field construction. An elliptic deformation of our construction is discussed, showing connections with the Drinfeld quasi-Hopf twisting [Leningrad Math. J.1, 1419 (1990)] in the sence of Babelon-Bernard–Billey [Phys. Lett. B.375, 89 (1996)], the Ruijsenaars difference operator [Commun. Math. Phys.110, 191 (1987)], and the operator M(q,t1,t2) of Okounkov–Pandharipande [e-print arXiv:math-ph/0411210].

1.
Arnaudon
,
D.
,
Buffenoir
,
E.
,
Ragoucy
,
E.
, and
Roche
,
Ph.
, “
Universal solutions of quantum dynamical Yang-Baxter equations
,”
Lett. Math. Phys.
44
,
201
(
1998
).
2.
Awata
,
H.
,
Kubo
,
H.
,
Odake
,
S.
, and
Shiraishi
,
J.
, “
Quantum WN algebras and Macdonald polynomials
,”
Commun. Math. Phys.
179
,
401
(
1996
).
3.
Awata
,
H.
,
Matsuo
,
Y.
,
Odake
,
S.
, and
Shiraishi
,
J.
, “
Collective field theory, Calogero-Sutherland model and generalized matrix model
,”
Phys. Lett. B
347
,
49
(
1995
).
4.
Babelon
,
O.
,
Bernard
,
D.
, and
Billey
,
E.
, “
A quasi-Hopf algebra interpretation of quantum 3j- and 6j-symbols and difference equations
,”
Phys. Lett. B
375
,
89
(
1996
).
5.
Ding
,
J.
, and
Iohara
,
K.
, “
Generalization of Drinfeld quantum affine algebras
,”
Lett. Math. Phys.
41
,
183
(
1997
).
6.
Drinfeld
,
V. G.
, “
Quasi-Hopf algebras
,”
Leningrad Math. J.
1
,
1419
(
1990
).
7.
Enriquez
,
B.
, and
Felder
,
G.
, “
Elliptic quantum groups Eτ,η(sl2) and quasi-Hopf algebras
,”
Commun. Math. Phys.
195
,
651
(
1998
).
8.
Feigin
,
B.
, and
Frenkel
,
E.
, “
Quantum W-algebras and elliptic algebras
,”
Commun. Math. Phys.
178
,
653
(
1996
).
9.
Feigin
,
B.
, and
Odesskii
,
A.
, “
A family of elliptic algebras
,”
J. Hydraul. Eng.
11
,
531
(
1997
).
10.
Feigin
,
B.
, and
Tsymbaliuk
,
A.
, “
Heisenberg action in the equivariant K-theory of Hilbert schemes via shuffle algebra
,” e-print arXiv:0904.1679.
11.
Felder
,
G.
,
XIth ICMP
, Paris,
1994
, (
International
,
Cambridge, MA
,
1995
), pp.
211
218
.
12.
Frønsdal
,
C.
, “
Generalization and exact deformations of quantum groups
,”
Publ. Res. Inst. Math. Sci.
33
,
91
(
1997
).
13.
Frønsdal
,
C.
, “
Quasi-Hopf deformation of quantum groups
,”
Lett. Math. Phys.
40
,
117
(
1997
).
14.
Haiman
,
M.
, “
Macdonald polynomials and geometry
,”
MSRI Publications
38
,
207
(
1999
).
15.
Jing
,
N. H.
, “
q-Hypergeometric series and Macdonald functions
,”
J. Algebr. Comb.
3
,
291
(
1994
).
16.
Jimbo
,
M.
,
Konno
,
H.
,
Odake
,
S.
, and
Shiraishi
,
J.
, “
Quasi-Hopf twistors for elliptic quantum groups
,”
Transform. Groups
4
,
303
(
1999
).
17.
Jimbo
,
M.
,
Konno
,
H.
,
Odake
,
S.
, and
Shiraishi
,
J.
, “
Elliptic algebra Uq,p(ŝl2): Drinfeld currents and vertex operators
,”
Commun. Math. Phys.
199
,
605
(
1999
).
18.
Langmann
,
E.
, “
Second quantization of the elliptic calogero-sutherland model
,”
Commun. Math. Phys.
247
,
321
(
2004
).
19.
Langmann
,
E.
, “
Remarkable identities related to the (quantum) elliptic Calogero-Sutherland model
,”
J. Math. Phys.
47
,
022101
(
2006
).
20.
Macdonald
,
I. G.
, Oxford Mathematical Monographs, 2nd ed. (
Oxford University Press
,
Oxford
,
1995
).
21.
Odesskii
,
A. V.
, “
Elliptic algebras
,”
Russ. Math. Surveys
57
,
1127
(
2002
).
22.
Noumi
,
M.
, private communication (
2007
).
23.
Okounkov
,
A.
, and
Pandharipande
,
R.
, “
Quantum cohomology of the Hilbert scheme of points in the plane
,” e-print arXiv:math/0411210.
24.
Ruijsenaars
,
S. N. M.
, “
Complete integrability of relativistic Calogero-Moser systems and elliptic function identities
,”
Commun. Math. Phys.
110
,
191
(
1987
).
25.
Shiraishi
,
J.
,
Lectures on Quantum Integrable Systems
(
SGC Library
,
Saiensusha
,
2003
), Vol.
28
(in Japanese).
26.
Shiraishi
,
J.
, “
A family of integral transformations and basic hypergeometric series
,”
Commun. Math. Phys.
263
,
439
(
2006
).
27.
Shiraishi
,
J.
,
Kubo
,
H.
,
Awata
,
H.
, and
Odake
,
S.
, “
A quantum deformation of the Virasoro algebra and the Macdonald symmetric functions
,”
Lett. Math. Phys.
38
,
33
(
1996
).
You do not currently have access to this content.