We study the Ising model on a half-infinite cylinder at the critical temperature. On the boundary circle, we fix four intervals of constant signs. Let , , , and be the positions where the flips occur, labeled counterclockwise in that order. From each starts a contour between clusters of opposite signs. The contour leaving may end only at or . Using an argument based on conformal field theory, we give the probability distribution that the contour leaving ends at . The behavior of this function when is described by a power law with an exponent that belongs to the Kac table but that corresponds to a nonunitarizable highest-weight representation. We check that this prediction agrees with a Monte Carlo simulation.
REFERENCES
1.
Arguin
, L. P.
and Saint-Aubin
, Y.
, “Non-unitary observables in the 2d critical Ising model
,” Phys. Lett. B
541
, 384
(2002
).2.
Arguin
, S. P.
and Saint-Aubin
, Y.
, “Behavior of the two-dimensional Ising model at the boundary of a half-infinite cylinder
” (unpublished).3.
Bauer
, M.
, Bernard
, D.
, and Kytölä
, K.
, “Multiple Schramm-Loewner evolutions and statistical mechanics martingales
,” J. Stat. Phys.
120
, 1125
(2005
).4.
Burkhardt
, Th. W.
and Guim
, I.
, “Conformal theory of the two-dimensional Ising model with homogeneous boundary conditions and with disordered boundary fields
,” Phys. Rev. B
47
, 14306
(1993
).5.
Cardy
, J. L.
, “Boundary conditions, fusion rules and the Verlinde formula
,” Nucl. Phys. B
324
, 581
(1989
);see also
Cardy
, J. L.
, “Conformal invariance and surface critical behavior
,” Nucl. Phys. B
240
, 514
(1984
).6.
Cardy
, J. L.
, “Critical percolation in finite geometries
,” J. Phys. A
25
, L201
(1992
).7.
Di Francesco
, Ph.
, Mathieu
, P.
, and Sénéchal
, D.
, Conformal Field Theory
(Springer
, New York
, 1997
).8.
Dubédat
, J.
, “Euler integrals for commuting SLEs
,” J. Stat. Phys.
123
, 1183
(2006
).9.
Kenyon
, R. W.
and Wilson
, D. B.
, “Boundary partitions in trees and dimers
,” e-print arXiv:math/0608422v4.10.
Kozdron
, M. J.
and Lawler
, G. F.
, in Stochastic Evolution to Renormalization of Quantum Fields
, Fields Institute Communications Series
Vol. 50
(American Mathematical Society
, Providence, RI
, 2007
), pp. 199
–224
.11.
Langlands
, R. P.
, Lewis
, M. -A.
, and Saint-Aubin
, Y.
, “Universality and conformal invariance for the Ising model in domains with boundary
,” J. Stat. Phys.
98
, 131
(2000
).12.
Lapalme
, E.
and Saint-Aubin
, Y.
, “Crossing probabilities on same-spin clusters in the two-dimensional Ising model
,” J. Phys. A
34
, 1825
(2001
).13.
Mathieu
, P.
and Ridout
, D.
, “From percolation to logarithmic conformal field theory
, Phys. Lett. B
657
, 120
(2007
);Mathieu
, P.
and Ridout
, D.
, ““Logarithmic M(2,p) minimal models, their logarithmic couplings, and duality
,” Nucl. Phys. B
801
, 268
(2008
).14.
Rasmussen
, J.
and Pearce
, P. A.
, “Fusion algebra of critical percolation
,” J. Stat. Mech.: Theory Exp.
2007
, P09002
.15.
Saleur
, H.
, “Conformal invariance for polymers and percolation
,” J. Phys. A
20
, 455
(1987
);Saleur
, H.
and Duplantier
, B.
, “Exact determination of the percolation hull exponent in two dimensions
,” Phys. Rev. Lett.
58
, 2325
(1987
);
[PubMed]
Saleur
, H.
and Duplantier
, B.
, “Exact fractal dimension of 2D Ising clusters
,” Phys. Rev. Lett.
63
, 2536
(1989
).
[PubMed]
16.
Smirnov
, S.
, “Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model
,” Ann. Math.
(accepted).© 2009 American Institute of Physics.
2009
American Institute of Physics
You do not currently have access to this content.