We study the Ising model on a half-infinite cylinder at the critical temperature. On the boundary circle, we fix four intervals of constant signs. Let θ1, θ2, θ3, and θ4 be the positions where the flips occur, labeled counterclockwise in that order. From each θ starts a contour between clusters of opposite signs. The contour leaving θ1 may end only at θ2 or θ4. Using an argument based on conformal field theory, we give the probability distribution that the contour leaving θ1 ends at θ2. The behavior of this function when θ2θ10 is described by a power law with an exponent (53) that belongs to the Kac table but that corresponds to a nonunitarizable highest-weight representation. We check that this prediction agrees with a Monte Carlo simulation.

1.
Arguin
,
L. P.
and
Saint-Aubin
,
Y.
, “
Non-unitary observables in the 2d critical Ising model
,”
Phys. Lett. B
541
,
384
(
2002
).
2.
Arguin
,
S. P.
and
Saint-Aubin
,
Y.
, “
Behavior of the two-dimensional Ising model at the boundary of a half-infinite cylinder
” (unpublished).
3.
Bauer
,
M.
,
Bernard
,
D.
, and
Kytölä
,
K.
, “
Multiple Schramm-Loewner evolutions and statistical mechanics martingales
,”
J. Stat. Phys.
120
,
1125
(
2005
).
4.
Burkhardt
,
Th. W.
and
Guim
,
I.
, “
Conformal theory of the two-dimensional Ising model with homogeneous boundary conditions and with disordered boundary fields
,”
Phys. Rev. B
47
,
14306
(
1993
).
5.
Cardy
,
J. L.
, “
Boundary conditions, fusion rules and the Verlinde formula
,”
Nucl. Phys. B
324
,
581
(
1989
);
see also
Cardy
,
J. L.
, “
Conformal invariance and surface critical behavior
,”
Nucl. Phys. B
240
,
514
(
1984
).
6.
Cardy
,
J. L.
, “
Critical percolation in finite geometries
,”
J. Phys. A
25
,
L201
(
1992
).
7.
Di Francesco
,
Ph.
,
Mathieu
,
P.
, and
Sénéchal
,
D.
,
Conformal Field Theory
(
Springer
,
New York
,
1997
).
8.
Dubédat
,
J.
, “
Euler integrals for commuting SLEs
,”
J. Stat. Phys.
123
,
1183
(
2006
).
9.
Kenyon
,
R. W.
and
Wilson
,
D. B.
, “
Boundary partitions in trees and dimers
,” e-print arXiv:math/0608422v4.
10.
Kozdron
,
M. J.
and
Lawler
,
G. F.
, in
Stochastic Evolution to Renormalization of Quantum Fields
,
Fields Institute Communications Series
Vol.
50
(
American Mathematical Society
,
Providence, RI
,
2007
), pp.
199
224
.
11.
Langlands
,
R. P.
,
Lewis
,
M. -A.
, and
Saint-Aubin
,
Y.
, “
Universality and conformal invariance for the Ising model in domains with boundary
,”
J. Stat. Phys.
98
,
131
(
2000
).
12.
Lapalme
,
E.
and
Saint-Aubin
,
Y.
, “
Crossing probabilities on same-spin clusters in the two-dimensional Ising model
,”
J. Phys. A
34
,
1825
(
2001
).
13.
Mathieu
,
P.
and
Ridout
,
D.
, “
From percolation to logarithmic conformal field theory
,
Phys. Lett. B
657
,
120
(
2007
);
Mathieu
,
P.
and
Ridout
,
D.
, ““
Logarithmic M(2,p) minimal models, their logarithmic couplings, and duality
,”
Nucl. Phys. B
801
,
268
(
2008
).
14.
Rasmussen
,
J.
and
Pearce
,
P. A.
, “
Fusion algebra of critical percolation
,”
J. Stat. Mech.: Theory Exp.
2007
,
P09002
.
15.
Saleur
,
H.
, “
Conformal invariance for polymers and percolation
,”
J. Phys. A
20
,
455
(
1987
);
Saleur
,
H.
and
Duplantier
,
B.
, “
Exact determination of the percolation hull exponent in two dimensions
,”
Phys. Rev. Lett.
58
,
2325
(
1987
);
[PubMed]
Saleur
,
H.
and
Duplantier
,
B.
, “
Exact fractal dimension of 2D Ising clusters
,”
Phys. Rev. Lett.
63
,
2536
(
1989
).
[PubMed]
16.
Smirnov
,
S.
, “
Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model
,”
Ann. Math.
(accepted).
You do not currently have access to this content.