This paper concerns the motion of relativistic membranes in the Schwarzschild spacetime. A nonlinear wave equation is derived and investigated for relativistic membranes moving in the Schwarzschild spacetime, and spherical symmetric solutions for the motion are obtained and studied systematically. Some interesting physical phenomena are discovered and illustrated.

1.
Allen
,
P.
,
Andersson
,
L.
, and
Isenberg
,
J.
, “
Timelike minimal submanifolds of general co-dimension in Minkowski space time
,”
J. Hyperbolic Differ. Equ.
3
,
691
(
2006
).
2.
Barbashov
,
B. M.
and
Nesterenko
,
V. V.
,
Introduction to the Relativistic String Theory
(
World Scientific
,
Teaneck, NJ
,
1990
).
3.
Bordemann
,
M.
and
Hoppe
,
J.
, “
The dynamics of relativistic membranes: Reduction to 2-dimensional fluid dynamics
,”
Phys. Lett. B
317
,
315
(
1993
).
4.
Bordemann
,
M.
and
Hoppe
,
J.
, “
The dynamics of relativistic membranes II: Nonlimear waves and covariantly reduced membrane equations
,”
Phys. Lett. B
325
,
359
(
1994
).
5.
Brendle
,
S.
, “
Hypersurfaces in Minkowski space with vanishing mean curvature
,”
Commun. Pure Appl. Math.
55
,
1249
(
2002
).
6.
Colding
,
T. H.
and
Minicozzi
,
W. P.
,
Minimal Surfaces
,
Courant Lecture Notes in Mathematics
Vol.
4
(
New York University, Courant Institute of Mathematical Sciences
,
New York
,
1999
).
7.
Green
,
M. B.
,
Schwarz
,
J. H.
, and
Witten
,
E.
,
Superstring Theory: 1. Introduction
,
Cambridge Monographs on Mathematical Physics
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1988
).
8.
Gu
,
C. -H.
, “
On the motion of a string in a curved space-time
,”
Proceeding of the Third Grossmann Meeting on General Relativity
, Beijing,
1983
(unpublished), pp.
139
142
.
9.
Gu
,
C. -H.
, “
A global study of extremal surfaces in 3-dimensional Minkowski space
,”
Lect. Notes Math.
1255
,
26
(
1987
).
10.
Gu
,
C. -H.
, “
A class of boundary problems for extremal surfaces of mixed type in Minkowski 3-space
,”
J. Reine Angew. Math.
385
,
195
(
1988
).
11.
Hoppe
,
J.
, “
Some classical solutions of relativistic membrane equations in 4-space-time dimensions
,”
Phys. Lett. B
329
,
10
(
1994
).
12.
Hoppe
,
J.
, “
Reformulating M-brane equations
,”
Phys. Lett. B
663
,
351
(
2008
).
13.
Huang
,
S. -J.
and
Kong
,
D. -X.
, “
Equations for the motion of relativistic torus in the Minkowski space R1+n
,”
J. Math. Phys.
48
,
083510
(
2007
).
14.
Lax
,
P. D.
, “
Hyperbolic systems of conservation laws II
,”
Commun. Pure Appl. Math.
10
,
537
(
1957
).
15.
Lindblad
,
H.
, “
A remark on global existence for small initial data of the minimal surface equation in Minkowskian space time
,”
Proc. Am. Math. Soc.
132
,
1095
(
2004
).
16.
Majda
,
A.
,
Compressible Fluid Flow and System of Conservation Laws in Several Space Variables
,
Applied Mathematical Sciences
Vol.
53
(
Springer-Verlag
,
New York
,
1984
).
17.
Osserman
,
R. A.
,
A Survey of Minimal Surfaces
, 2nd ed. (
Dover
,
New York
,
1986
).
18.
Nambu
,
Y.
, “
Strings, monopoles, and gauge fields
,”
Phys. Rev. D
10
,
4262
(
1974
).
19.
Nambu
,
Y.
, “
Magnetic and electric confinement of quarks
,”
Phys. Rep.
23
,
250
(
1976
).
20.
Wilson
,
K. G.
, “
Confinement of quarks
,”
Phys. Rev. D
10
,
2445
(
1974
).
You do not currently have access to this content.