We discuss a specific class of regular-singular Laplace-type operators with matrix coefficients. Their zeta determinants were studied by Kirsten, Loya, and Park [Manuscr. Math.125, 95 (2008)] on the basis of the Contour integral method, with general boundary conditions at the singularity and Dirichlet boundary conditions at the regular boundary. We complete the arguments of Kirsten, Loya, and Park by explicitly verifying that the Contour integral method indeed applies in the regular-singular setup. Further we extend the zeta-determinant computations to generalized Neumann boundary conditions at the regular boundary and apply our results to compute zeta determinants of Laplacians on a bounded generalized cone with relative ideal boundary conditions.

1.
Handbook of Mathematical Functions
, edited by
M.
Abramowitz
and
I. A.
Stegun
(
AMS
,
Providence, RI
,
1965
), p.
55
.
2.
Bordag
,
M.
,
Geyer
,
B.
,
Kirsten
,
K.
, and
Elizalde
,
E.
, “
Zeta function determinant of the Laplace Operator on the D-dimensional ball
,”
Commun. Math. Phys.
179
,
215
(
1996
).
3.
Bordag
,
M.
,
Kirsten
,
K.
, and
Dowker
,
J. S.
, “
Heat-kernels and functional determinants on the generalized cone
,”
Commun. Math. Phys.
182
,
371
(
1996
).
4.
Brüning
,
J.
, and
Lesch
,
M.
, “
Hilbert complexes
,”
J. Funct. Anal.
108
,
88
(
1992
).
5.
Brüning
,
J.
, and
Lesch
,
M.
, “
Kähler-Hodge Theory for conformal complex cones
,”
Geom. Funct. Anal.
3
,
439
(
1993
).
6.
Brüning
,
J.
, “
L2-index theorems for certain complete manifolds
,”
J. Diff. Geom.
32
,
491
(
1990
).
7.
Brüning
,
J.
, and
Seeley
,
R.
, “
An index theorem for first order regular-singular operators
,”
Am. J. Math.
110
,
659
(
1988
).
8.
Brüning
,
J.
, and
Seeley
,
R.
, “
Regular singular asymptotics
,”
Adv. Math.
58
,
133
(
1985
).
9.
Brüning
,
J.
, and
Seeley
,
R.
, “
The resolvent expansion for second order regular singular operators
,”
J. Funct. Anal.
73
,
369
(
1987
).
10.
Callias
,
C.
, “
The resolvent and the heat kernel for some singular boundary problems
,”
Contrib. Plasma Phys.
13
,
1113
(
1988
).
11.
Cheeger
,
J.
, “
On the spectral geometry of spaces with conical singularities
,”
Proc. Natl. Acad. Sci. U.S.A.
76
,
2103
(
1979
).
12.
Cheeger
,
J.
, “
Spectral Geometry of singular Riemannian spaces
,”
J. Diff. Geom.
18
,
575
(
1983
).
13.
Dowker
,
J. S.
, and
Kirsten
,
K.
, “
Spinors and forms on the ball and the generalized cone
,”
Commun. Anal. Geom.
7
,
641
(
1999
).
14.
Gradsteyn
,
I. S.
,
Ryzhik
,
I. M.
, and
Jeffrey
,
Al.
,
Table of Integrals, Series and Products
, 5th ed. (
Academic
,
New York
,
1994
).
15.
Kirsten
,
K.
,
Loya
,
P.
, and
Park
,
J.
, “
Functional determinants for general self-adjoint extensions of Laplace-type operators resulting from the generalized cone
,”
Manuscr. Math.
125
,
95
(
2008
).
16.
Kirsten
,
K. M.
,
,
Loya
,
P.
,
Park
,
J.
, and
Vertman
,
B.
, “
Exotic expansions and pathological properties of zeta-functions on conic manifolds
,”
J. Geom. Anal.
18
,
835
(
2008
).
17.
Lesch
,
M.
, “
Determinants of regular singular Sturm-Liouville operators
,”
Math. Nachr.
194
,
139
(
1995
).
18.
Lesch
,
M.
,
Operators of Fuchs Type, Conical singularities, and Asymptotic Methods
, (
Band
,
Teubner
,
1997
), p.
136
.
19.
Lesch
,
M.
(private communication).
20.
Loya
,
P.
,
McDonald
,
P.
, and
Park
,
J.
, “
Zeta regularized determinants for conic manifolds
,”
J. Funct. Anal.
242
,
195
(
2006
).
21.
Mooers
,
E.
, “
Heat kernel asymptotics on manifolds with conic singularities
,”
J. Anal. Math.
78
,
1
(
1999
).
22.
Olver
,
F. W.
, “
Asymptotics and special functions
,”
AKP Classics
(
Academic Press
,
St. Louis, Missouri, USA
,
1987
).
23.
Paquet
,
L.
, “
Probl’emes mixtes pour le syst’eme de Maxwell
,”
Ann. Fac. Sci. Toulouse Math.
4
,
103
(
1982
).
24.
Reed
,
M.
, and
Simon
,
B.
,
Methods of Mathematical Physics
(
Academic Press
,
New York
,
1979
), Vol.
II
.
25.
Rudin
,
W.
,
Functional Analysis
, 2nd ed. (
McGraw-Hill
,
New York
1991
).
26.
Vertman
,
B.
, “
Analytic torsion of a bounded generalized cone
,”
Commun. Math. Phys.
(to be published).
27.
Weidmann
,
J.
, “
Spectral Theory of Ordinary Differential Equations
,”
Lecture Notes in Mathematics
(
Springer-Verlag
,
Berlin
,
1987
), p.
1258
.
28.
Weidmann
,
J.
,
Linear Operators in Hilbert spaces
(
Springer-Verlag
,
New York
,
1980
).
29.
Watson
,
G. N.
,
A treatise on the Theory of Bessel Functions
(
Cambridge University Press
,
Cambridge
,
1922
).
30.
Whittaker
,
E. T.
,
Watson
,
G. N.
,
A Course on Modern Analysis
, (
Cambridge University Press
,
Cambridge
,
1946
).
You do not currently have access to this content.