In this paper, we prove that the Cauchy problem for the generalized system of the nonlinear evolution equations arising from DNA uttσuxxuxxtt=f(v)xx, vttvxxtt=g(v)xx has a unique global generalized solutions in C2([0,);Hs×Hs), a unique global classical solution, and the sufficient conditions of blow up of solution in finite time are given. We also prove that the Cauchy problem has a unique global generalized solution in C2([0,);Wm,pL×Wm,pL) and a unique global classical solution.

1.
Dé Godefroy
,
A.
, “
Blow up of solutions of a generalized Boussinesq equation
,”
IMA J. Appl. Math.
60
,
123
(
1998
).
2.
Christiansen
,
P. L.
,
Lomdahl
,
P. S.
, and
Muto
,
V.
, “
On a Toda lattice model with a transversal degree of freedom
,”
Nonlinearity
4
,
477
(
1990
).
3.
Chen
,
G.
, and
Zhang
,
H.
, “
Initial boundary value problem for a system of generalized IMBq equations
,”
Math. Methods Appl. Sci.
27
,
497
(
2004
).
4.
Chen
,
G.
,
Xing
,
J.
, and
Yang
,
Z.
, “
Cauchy problem for generalized IMBq equation with several variables
,”
Nonlinear Anal. Theory, Methods Appl.
26
,
1255
(
1996
).
5.
Chen
,
G.
, and
Wang
,
S.
, in
Proceedings of the Conference on Nonlinear Partial Differential Equations and Applications
, edited by
Boling
,
G.
, and
Dadi
,
Y.
(
World Scientific
,
Singapore
,
1998
), pp.
91
97
.
6.
Chen
,
G.
, and
Wang
,
S.
, “
Existence and nonexistence of global solution for the generalized IMBq equation
,”
Nonlinear Anal. Theory, Methods Appl.
36
,
961
(
1999
).
7.
Kato
,
T.
, and
Ponce
,
G.
, “
Commutator estimates and the Euler and Navier-Stokes equations
,”
Commun. Pure Appl. Math.
41
,
891
(
1988
).
8.
Levine
,
H. A.
, “
Some additional remarks on the nonexistence of global solutions to nonlinear wave equations
,”
SIAM J. Math. Anal.
5
,
138
(
1974
).
9.
Makhankov
,
V. G.
, “
Dynamics of classical solitons (in non-integrable systems)
,”
Phys. Rep., Phys. Lett.
35
,
1
(
1978
).
10.
Muto
,
V.
, “
Nonlinear models for DNA dynamics
,” Ph.D. thesis,
The Technical University of Denmark
,
1988
.
11.
Muto
,
V.
,
Lomdahl
,
P. S.
, and
Christiansen
,
P. L.
, “
A two-dimensional discrete model for DNA dynamics: longitudinal wave propagation and denaturation
,”
Phys. Rev. A
42
,
7452
(
1990
).
12.
Muto
,
V.
,
Scott
,
A. C.
, and
Christiansen
,
P. L.
, “
Thermally generated solitions in a Toda lattice model of DNA
,”
Phys. Lett. A
136
,
33
(
1989
).
13.
Muto
,
V.
,
Scott
,
A. C.
, and
Christiansen
,
P. L.
, “
A Toda lattice model for DNA: thermally generated solitions
,”
Physica D
44
,
75
(
1990
).
14.
Olsen
,
O. H.
,
Lomdahl
,
P. S.
, and
Kerr
,
W. C.
, “
Localized excitations in a three-dimensional nonlinear model of A 130 Hellix
,”
Phys. Lett. A
136
,
402
(
1989
).
15.
Clarkson
,
P. A.
,
Le Veque
,
R. J.
, and
Saxton
,
R.
, “
Solitary-wave interactions in elastic rods
,”
Stud. Appl. Math.
75
,
95
(
1986
).
16.
Peyrard
,
M.
, and
Bishop
,
A. R.
, “
Statistical mechanics of a nonlinear model for DNA denaturation
,”
Phys. Rev. Lett.
62
,
2755
(
1989
).
17.
Wang
,
S.
, and
Chen
,
G.
, “
Small amplitude solutions of the generalized IMBq equation
,”
J. Math. Anal. Appl.
274
,
846
(
2002
).
18.
Li
,
T. -T.
and
Chen
,
Y. M.
-
,
Global Classical Solutions for Nonlinear Evolution Equations
(
Longman
,
New York
,
1992
), Vol.
45
.
19.
Techera
,
M.
,
Daemen
,
L. L.
, and
Prohofsky
,
E. W.
, “
Nonlinear model of the DNA molecule
,”
Phys. Rev. A
40
,
6636
(
1989
).
20.
Liu
,
Y.
, “
Existence and Blow-up of solutions of a nonlinear Pochhammer-Chree equation
,”
Indiana Univ. Math. J.
45
,
797
(
1996
).
You do not currently have access to this content.