In this paper, we prove that the Cauchy problem for the generalized system of the nonlinear evolution equations arising from DNA , has a unique global generalized solutions in , a unique global classical solution, and the sufficient conditions of blow up of solution in finite time are given. We also prove that the Cauchy problem has a unique global generalized solution in and a unique global classical solution.
REFERENCES
1.
Dé Godefroy
, A.
, “Blow up of solutions of a generalized Boussinesq equation
,” IMA J. Appl. Math.
60
, 123
(1998
).2.
Christiansen
, P. L.
, Lomdahl
, P. S.
, and Muto
, V.
, “On a Toda lattice model with a transversal degree of freedom
,” Nonlinearity
4
, 477
(1990
).3.
Chen
, G.
, and Zhang
, H.
, “Initial boundary value problem for a system of generalized IMBq equations
,” Math. Methods Appl. Sci.
27
, 497
(2004
).4.
Chen
, G.
, Xing
, J.
, and Yang
, Z.
, “Cauchy problem for generalized IMBq equation with several variables
,” Nonlinear Anal. Theory, Methods Appl.
26
, 1255
(1996
).5.
Chen
, G.
, and Wang
, S.
, in Proceedings of the Conference on Nonlinear Partial Differential Equations and Applications
, edited by Boling
, G.
, and Dadi
, Y.
(World Scientific
, Singapore
, 1998
), pp. 91
–97
.6.
Chen
, G.
, and Wang
, S.
, “Existence and nonexistence of global solution for the generalized IMBq equation
,” Nonlinear Anal. Theory, Methods Appl.
36
, 961
(1999
).7.
Kato
, T.
, and Ponce
, G.
, “Commutator estimates and the Euler and Navier-Stokes equations
,” Commun. Pure Appl. Math.
41
, 891
(1988
).8.
Levine
, H. A.
, “Some additional remarks on the nonexistence of global solutions to nonlinear wave equations
,” SIAM J. Math. Anal.
5
, 138
(1974
).9.
Makhankov
, V. G.
, “Dynamics of classical solitons (in non-integrable systems)
,” Phys. Rep., Phys. Lett.
35
, 1
(1978
).10.
Muto
, V.
, “Nonlinear models for DNA dynamics
,” Ph.D. thesis, The Technical University of Denmark
, 1988
.11.
Muto
, V.
, Lomdahl
, P. S.
, and Christiansen
, P. L.
, “A two-dimensional discrete model for DNA dynamics: longitudinal wave propagation and denaturation
,” Phys. Rev. A
42
, 7452
(1990
).12.
Muto
, V.
, Scott
, A. C.
, and Christiansen
, P. L.
, “Thermally generated solitions in a Toda lattice model of DNA
,” Phys. Lett. A
136
, 33
(1989
).13.
Muto
, V.
, Scott
, A. C.
, and Christiansen
, P. L.
, “A Toda lattice model for DNA: thermally generated solitions
,” Physica D
44
, 75
(1990
).14.
Olsen
, O. H.
, Lomdahl
, P. S.
, and Kerr
, W. C.
, “Localized excitations in a three-dimensional nonlinear model of A Hellix
,” Phys. Lett. A
136
, 402
(1989
).15.
Clarkson
, P. A.
, Le Veque
, R. J.
, and Saxton
, R.
, “Solitary-wave interactions in elastic rods
,” Stud. Appl. Math.
75
, 95
(1986
).16.
Peyrard
, M.
, and Bishop
, A. R.
, “Statistical mechanics of a nonlinear model for DNA denaturation
,” Phys. Rev. Lett.
62
, 2755
(1989
).17.
Wang
, S.
, and Chen
, G.
, “Small amplitude solutions of the generalized IMBq equation
,” J. Math. Anal. Appl.
274
, 846
(2002
).18.
Li
, T. -T.
and Chen
, Y. M.
-, Global Classical Solutions for Nonlinear Evolution Equations
(Longman
, New York
, 1992
), Vol. 45
.19.
Techera
, M.
, Daemen
, L. L.
, and Prohofsky
, E. W.
, “Nonlinear model of the DNA molecule
,” Phys. Rev. A
40
, 6636
(1989
).20.
Liu
, Y.
, “Existence and Blow-up of solutions of a nonlinear Pochhammer-Chree equation
,” Indiana Univ. Math. J.
45
, 797
(1996
).© 2009 American Institute of Physics.
2009
American Institute of Physics
You do not currently have access to this content.