Using complexified quaternions, a formalism without Lorentz frames, and therefore also without vierbeins, for dealing with tensor and spinor fields in curved space-time is presented. A local U(1) gauge symmetry, which, it is speculated, might be related to electromagnetism, emerges naturally.

1.
V.
Fock
and
D.
Ivanenko
,
Compt. Rend.
188
,
1470
(
1929
).
2.
H.
Weyl
,
Z. Phys.
56
,
330
(
1929
).
3.
S.
Weinberg
,
Gravitation and Cosmology
(
Wiley
,
New York
,
1972
), pp.
365
373
.
4.
S.
Weinberg
,
The Quantum Theory of Fields
(
Cambridge University Press
,
Cambridge
,
2002
), Vols.
1–3
, Sec. 31.A.
5.
M. B.
Green
,
J. H.
Schwarz
, and
E.
Witten
,
Superstring Theory
(
Cambridge University Press
,
Cambridge
,
1987
), Sec. 12.1.
6.
C. W.
Misner
,
K. S.
Thorne
, and
J. A.
Wheeler
,
Gravitation
(
Freeman
,
New York
,
1973
).
7.
S.
Okubo
,
Introduction to Octonion and Other Non-Associative Algebras in Physics
,
Montroll Memorial Lecture Series in Mathematical Physics
Series No. 2 (
Cambridge University Press
,
Cambridge
,
1995
).
8.
T. A.
Springer
and
F. D.
Veldkamp
,
Octonions, Jordan Algebras and Exceptional Groups
(
Springer
,
Berlin
,
2000
).
9.
R.
Dündarer
and
F.
Gürsey
,
J. Math. Phys.
32
,
1176
(
1991
).
10.
J.
Lambek
,
Math. Intell.
17
,
7
(
1995
).
11.
G.
’t Hooft
,
Nucl. Phys. B
357
,
211
(
1991
).
12.
J. C.
Baez
,
Bull. Am. Math. Soc.
39
,
145
(
2002
).
13.
M.
Günaydin
and
F.
Gürsey
,
J. Math. Phys.
14
,
1651
(
1973
).
You do not currently have access to this content.