We construct a family of admissible analysis reconstruction pairs of wavelet families on the sphere. The construction is an extension of the isotropic Poisson wavelets. Similar to those, the directional wavelets allow a finite expansion in terms of off-center multipoles. Unlike the isotropic case, the directional wavelets are not a tight frame. However, at small scales, they almost behave like a tight frame. We give an explicit formula for the pseudodifferential operator given by the combination analysis-synthesis with respect to these wavelets. The Euclidean limit is shown to exist and an explicit formula is given. This allows us to quantify the asymptotic angular resolution of the wavelets.

1.
S.
Dahlke
,
W.
Dahmen
,
E.
Schmitt
, and
I.
Weinreich
,
Numer. Funct. Anal. Optim.
16
,
19
(
1995
).
2.
D.
Potts
and
M.
Tasche
, in
Approximation Theory VIII, Vol. 2: Wavelets and Multilevel Approximation
(
World Scientific
,
Singapore
,
1995
), pp. 335–342.
3.
D.
Potts
,
G.
Steidl
, and
M.
Tasche
, in
Advanced Topics in Multivariate Approximation
(
World Scientific
,
Singapore
,
1996
), pp.
1
154
.
4.
I.
Weinreich
,
Appl. Comput. Harmon. Anal.
10
,
1
(
2001
).
5.
J.
Göttelmann
,
Appl. Comput. Harmon. Anal.
7
,
1
(
1999
).
6.
P.
Schröder
and
W.
Sweldens
, in
SIGGRAPH ’95: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques
(
ACM
,
New York
,
1995
), pp. 161–172.
7.
S.
Dahlke
and
P.
Maass
,
J. Fourier Anal. Appl.
2
,
379
(
1996
).
8.
M.
Holschneider
,
J. Math. Phys.
37
,
4156
(
1996
).
9.
B.
Torresani
,
Signal Process.
43
,
341
(
1995
).
10.
J. -P.
Antoine
,
L.
Demanet
,
L.
Jacques
, and
P.
Vandergheynst
,
Appl. Comput. Harmon. Anal.
13
,
177
(
2002
).
11.
J. -P.
Antoine
and
P.
Vandergheynst
,
Appl. Comput. Harmon. Anal.
7
,
262
(
1999
).
12.
Y.
Wiaux
,
J. D.
McEwen
, and
P.
Vielva
,
J. Fourier Anal. Appl.
13
,
477
(
2007
).
13.
W.
Freeden
and
U.
Windheuser
,
Adv. Comput. Math.
5
,
51
(
1996
).
14.
J.
Sanz
,
D.
Herranz
,
M.
Lopez-Caniego
, and
F.
Argueso
,
Proceedings of the 14th European Signal Processing Conference (EUSIPCO 2006)
, Florence, Italy,
2006
(unpublished).
15.
J. D.
McEwen
,
M. P.
Hobson
, and
A. N.
Lasenby
, e-print arXiv:astro-ph/0609159v1.
16.
W.
Freeden
,
T.
Gervens
, and
M.
Schreiner
,
Constructive Approximation on the Sphere (With Applications to Geomathematics)
(
Clarendon
,
Oxford
,
1998
).
17.
I.
Iglewska-Nowak
and
M.
Holschneider
,
J. Fourier Anal. Appl.
13
,
405
(
2007
).
18.
A.
Chambodut
,
M.
Mandea
, and
M.
Holschneider
, in
First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies
, edited by
C.
Reigber
,
H.
Lühr
, and
P.
Schwintzer
(
Springer
,
New York
,
2003
), pp.
233
238
.
19.
A.
Chambodut
,
I.
Panet
,
M.
Mandea
,
M.
Diament
,
M.
Holschneider
, and
O.
Jamet
,
Geophys. J. Int.
163
,
875
(
2005
).
20.
M.
Holschneider
,
A.
Chambodut
, and
M.
Mandea
,
Phys. Earth Planet. Inter.
135
,
107
(
2003
).
21.
I.
Panet
,
A.
Chambodut
,
M.
Diament
,
M.
Holschneider
, and
O.
Jamet
,
J. Geophys. Res.
111
,
217
(
2006
).
22.
W.
Freeden
and
V.
Michel
,
Multiscale Potential Theory (With Applications to Geo-science)
(
Birkhäuser
,
Boston
,
2004
).
23.
W. P.
Johnson
,
Am. Math. Monthly
109
,
217
(
2002
).
24.
J. D.
McEwen
,
Y.
Wiaux
,
M.
Hobson
,
P.
Vandergheynst
, and
A.
Lasenby
,
Mon. Not. R. Astron. Soc.
384
,
1289
(
2008
).
25.
J. -P.
Antoine
and
R.
Murenzi
,
Signal Process.
52
,
259
(
1996
).
You do not currently have access to this content.