We formulate a noncommutative generalization of the Ricci flow theory in the framework of spectral action approach to noncommutative geometry. Grisha Perelman’s functionals are generated as commutative versions of certain spectral functionals defined by nonholonomic Dirac operators and corresponding spectral triples. We derive the formulas for spectral averaged energy and entropy functionals and state the conditions when such values describe (non)holonomic Riemannian configurations.

1.
R. S.
Hamilton
,
J. Diff. Geom.
17
,
255
(
1982
).
2.
G.
Perelman
, e-print arXiv:math.DG/0211159.
3.
S.
Vacaru
,
J. Math. Phys.
49
,
043504
(
2008
).
4.
S.
Vacaru
,
Int. J. Geom. Methods Mod. Phys.
5
,
473
(
2008
).
5.
S.
Vacaru
,
J. Math. Phys.
46
,
042503
(
2005
).
6.
H. -D.
Cao
and
X. -P.
Zhu
,
Asian J. Math.
10
,
165
(
2006
).
7.
Collected Papers on Ricci Flow
, edited by
H. -D.
Cao
,
B.
Chow
,
S. -C.
Chu
, and
S. -T.
Yau
(
International
,
Somerville
,
2003
).
8.
B.
Kleiner
and
J.
Lott
, e-print arXiv:math.DG/0605667.
9.
J. W.
Morgan
and
G.
Tian
, e-print arXiv:math.DG/0607607.
10.
S.
Vacaru
,
Int. J. Mod. Phys. A
21
,
4899
(
2006
).
11.
S.
Vacaru
and
M.
Visinescu
,
Int. J. Mod. Phys. A
22
,
1135
(
2007
).
12.
S.
Vacaru
,
P.
Stavrinos
,
E.
Gaburov
, and
D.
Gonţa
,
Clifford and Riemann-Finsler Structures in Geometric Mechanics and Gravity
,
Selected Works, Differential Geometry—Dynamical Systems, Monograph
Series No. 7 (
Geometry Balkan Press
,
Bucharest
,
2006
), www.mathem.pub.ro/dgds/mono/va-t.pdf and gr-qc/0508023.
13.
A.
Bejancu
and
H. R.
Farran
,
Foliations and Geometric Structures
(
Springer
,
New York
,
2005
).
14.
R.
Miron
and
M.
Anastasiei
,
The Geometry of Lagrange Spaces Theory and Applications
(
Kluwer
,
Dordrecht
,
1994
).
15.
R.
Miron
,
The Geometry of Higher-Order Hamilton Spaces
(
Kluwer
,
Dordrecht
,
2003
).
16.
A.
Connes
,
Noncommutative Geometry
(
Academic
,
New York
,
1994
).
17.
A.
Connes
and
J.
Lott
,
Nucl. Phys. B (Proc. Suppl.)
18
B,
29
(
1990
).
18.
A. H.
Chamseddine
and
A.
Connes
,
Phys. Rev. Lett.
77
,
4868
(
1996
).
19.
I.
Vancea
,
Phys. Rev. Lett.
79
,
3121
(
1997
).
20.
N.
Seiberg
and
E.
Witten
,
J. High Energy Phys.
09
,
032
(
1999
).
21.
C.
Castro
,
J. Geom. Phys.
33
,
173
(
2000
).
22.
J.
Moffat
,
Phys. Lett. B
493
,
142
(
2000
).
23.
B.
Jurco
,
L.
Moller
,
S.
Schraml
,
P.
Schupp
, and
J.
Wess
,
Eur. Phys. J. C
21
,
383
(
2001
).
24.
H.
Nishino
and
S.
Rajpoot
,
Phys. Lett. B
532
,
334
(
2002
).
25.
S.
Cacciatori
,
A. H.
Chamseddine
,
D.
Klemm
,
L.
Martucci
,
W. A.
Sabra
, and
D.
Zanon
,
Class. Quantum Grav.
19
,
4029
(
2002
).
26.
P.
Aschieri
,
C.
Bolhmann
,
M.
Dimitrijevic
,
F.
Meyer
,
P.
Suchpp
, and
J.
Wess
,
Class. Quantum Grav.
22
,
3511
(
2005
).
27.
R. J.
Szabo
,
Class. Quantum Grav.
23
,
R199
(
2006
).
28.
A.
Zerjak
and
B.
Dragovich
, e-print arXiv:0708.3950.
29.
A. H.
Chamseddine
and
A.
Connes
,
Phys. Rev. Lett.
99
,
071302
(
2007
).
30.
A. H.
Chamseddine
,
A.
Connes
, and
M.
Marcolli
,
Adv. Theor. Math. Phys.
11
,
991
(
2007
).
31.
G.
Landi
,
An Introduction to Noncommutative Spaces and Their Geometry
(
Springer-Verlag
,
Berlin
,
1997
).
32.
J.
Madore
,
An Introduction to Noncommutative Differential Geometry and Its Physical Applications
,
London Mathematical Society Lecture Note Series
No. 257, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2000
).
33.
J. M.
Gracia–Bondia
,
J.
Varilly
, and
H.
Figueroa
,
Elements of Noncommutative Geometry
(
Birkhauser
,
Boston
,
2001
).
34.
S.
Vacaru
,
Phys. Lett. B
498
,
74
(
2001
).
35.
A. H.
Chamseddine
and
A.
Connes
,
J. Math. Phys.
47
,
063504
(
2006
).
36.
S.
Vacaru
,
J. Math. Phys.
37
,
508
(
1996
).
37.
S.
Vacaru
,
J. High Energy Phys.
09
,
011
(
1998
).
38.
S.
Vacaru
,
J. Math. Phys.
47
,
093504
(
2006
).
39.
S.
Vacaru
and
P.
Stavrinos
,
Spinors and Space-Time Anisotropy
(
Athens University Press
,
Athens
,
2002
).
40.
S.
Vacaru
and
N.
Vicol
,
Int. J. Math. Math. Sci.
2004
(
23
),
1189
(
2004
).
41.
G.
Vrǎnceanu
,
Acad. Sci., Paris, C. R.
183
,
1083
(
1926
).
42.
Z.
Horak
,
Bull. Int. Acad. Sci. Bohème
1
(
1927
).
43.
P.
Grozman
and
D.
Leites
, e-print arXiv:math.DG/0509399.
44.
E.
Cartan
,
Les Espaces de Finsler
(
Hermann
,
Paris
,
1935
).
45.
A.
Bejancu
,
Finsler Geometry and Applications
(
Ellis Harwood
,
Bucharest
,
1990
).
46.
D.
Bao
,
S. S.
Chern
, and
Z.
Chen
,
An Introduction to Riemann–Finsler Geometry
(
Springer
,
New York
,
2000
).
47.
J.
Kern
,
Arch. Math.
25
,
438
(
1974
).
48.
I.
Bucataru
and
R.
Miron
,
Finsler–Lagrange Geometry. Applications to Dynamical Systems
(
Editure of Romanian Academy
,
New York
,
2007
).
49.
F.
Etayo
,
R.
Santamaría
, and
S.
Vacaru
,
J. Math. Phys.
46
,
032901
(
2005
).
50.
S.
Vacaru
,
Phys. Lett. A
372
,
2949
(
2008
).
51.
S.
Vacaru
,
Int. J. Geom. Methods Mod. Phys.
4
,
1285
(
2007
).
52.
Quantum Fields and Strings: A Course for Mathematicians
,
Institute for Advanced Study
Vols.
1
and 2, edited by
P.
Deligne
,
D. S.
Freed
,
P. I.
Etingof
,
D.
Kazhdan
, and
L. C.
Jeffrey
(
American Mathematical Society
,
Providence
,
1994
).
53.
S.
Vacaru
and
J. F.
Gonzalez–Hernandez
,
Indian J. Math.
50
,
573
(
2008
).
54.
J.
Streets
, e-print arXiv:math.DG/0710.5487v1.
55.
P.
Gilkey
,
Invariance Theory, the Heat Equation and the Atiyah–Singer Index Theorem
(
Publish of Perish
,
Wilmington, DE
,
1984
).
56.
A.
Connes
,
M.
Marcolli
, and
N.
Ramarchandran
,
Selecta Math., New Ser.
11
,
325
(
2005
).
57.
A.
Connes
,
C.
Consani
, and
M.
Marcolli
,
Adv. Math.
214
,
761
(
2007
).
58.
G.
Ruppeiner
,
Rev. Mod. Phys.
67
,
605
(
1995
).
59.
R.
Mrugala
,
J. D.
Nulton
,
J. C.
Schon
, and
P.
Salamon
,
Phys. Rev. A
41
,
3156
(
1990
).
60.
P.
Salamon
and
R.
Berry
,
Phys. Rev. Lett.
51
,
1127
(
1983
).
61.
S.
Vacaru
,
Ann. Phys. (N.Y.)
290
,
83
(
2001
).
62.
S.
Vacaru
, e-print arXiv:gr-qc/0801.4942.
63.
S.
Vacaru
,
Electron. J. Theor. Phys.
6
,
63
(
2009
);
S.
Vacaru
, e-print arXiv:0705.0729.
64.
S.
Vacaru
,
Ann. Phys. (N.Y.)
256
,
39
(
1997
).
65.
S.
Vacaru
,
Nucl. Phys. B
494
,
590
(
1997
).
You do not currently have access to this content.