A construction of the bi-Hamiltonian structures for integrable systems on regular time scales is presented. The trace functional on an algebra of -pseudodifferential operators, valid on an arbitrary regular time scale, is introduced. The linear Poisson tensors and the related Hamiltonians are derived. The quadratic Poisson tensors are given by the use of the recursion operators of the Lax hierarchies. The theory is illustrated by -differential counterparts of Ablowitz–Kaup–Newell–Segur and Kaup–Broer hierarchies.
REFERENCES
1.
I. M.
Gelfand
and L. A.
Dickey
, Funct. Anal. Appl.
10
, 259
(1976
).2.
3.
B.
Konopelchenko
and W.
Oevel
, Sov. Sci. Rev., Sect. C, Math. Phys. Rev.
29
, 581
(1993
).4.
W.
Oevel
and W.
Strampp
, Commun. Math. Phys.
157
, 51
(1993
).5.
M.
Błaszak
, Multi-Hamiltonian Theory of Dynamical Systems
, Texts and Monographs in Physics
(Springer-Verlag
, Berlin
, 1998
).6.
B. A.
Kuperschmidt
, Asterisque
123
, 212
(1985
).7.
Y. B.
Suris
, Phys. Lett. A
180
, 419
(1993
).8.
M.
Błaszak
and K.
Marciniak
, J. Math. Phys.
35
, 4661
(1994
).9.
W.
Oevel
, in Algebraic Aspects of Integrable Systems
, Progress in Nonlinear Differential Equations
Vol. 26
, edited by A. S.
Fokas
and I. M.
Gelfand
(Birkhäuser
, Boston
, 1996
), p. 261
.10.
C.
Kassel
, Commun. Math. Phys.
146
, 343
(1992
).11.
E.
Frenkel
, Int. Math. Res. Notices
1996
, 55
.12.
B.
Khesin
, V.
Lyubashenko
, and C.
Roger
, J. Funct. Anal.
143
, 55
(1997
).13.
M.
Adler
, E.
Horozov
, and P.
van Moerbeke
, Phys. Lett. A
242
, 139
(1998
).14.
M.
Gürses
, G. Sh.
Guseinov
, and B.
Silindir
, J. Math. Phys.
46
, 113510
(2005
).15.
M.
Błaszak
, B.
Silindir
, and B. M.
Szablikowski
, J. Phys. A: Math. Theor.
41
, 385203
(2008
).16.
B.
Aulbach
and S.
Hilger
, Nonlinear Dynamics and Quantum Dynamical Systems
, Mathematical Research
Vol. 59
(Akademie
, Berlin
, 1990
), pp. 9
–20
.17.
18.
M.
Bohner
and A.
Peterson
, Dynamic Equations on Time Scales: An Introduction with Applications
(Birkhauser
, Boston
, 2001
).19.
Advances in Dynamic Equations on Time Scales
, edited by M.
Bohner
and A.
Peterson
(Birkhauser
, Boston
, 2003
).20.
I.
Dorfmann
, Dirac Structures and Integrability of Nonlinear Evolution Equations
(Wiley
, 1993
).21.
L. A.
Dickey
, Soliton Equations and Hamiltonian Systems
, Advanced Series in Mathematical Physics
Vol. 26
, 2nd ed. (World Scientific
, Singapore
, 2003
).22.
P. J.
Olver
, Applications of Lie Groups to Differential Equations
(Springer
, New York
, 2000
).23.
W.
Oevel
and O.
Ragnisco
, Physica A
161
, 181
(1989
).24.
A.
Sergyeyev
, Acta Appl. Math.
83
, 183
(2004
).25.
A.
Dimakis
and F.
Müller-Hoissen
, J. Phys. A
39
, 9169
(2006
).26.
M.
Błaszak
, M.
Gürses
, B.
Silindir
, and B. M.
Szablikowski
, J. Math. Phys.
49
, 072702
(2008
).© 2009 American Institute of Physics.
2009
American Institute of Physics
You do not currently have access to this content.