Many world interpretations (MWIs) of quantum mechanics avoid the measurement problem by considering every term in the quantum superposition as actual. A seemingly opposed solution is proposed by modal interpretations (MIs) which state that quantum mechanics does not provide an account of what “actually is the case,” but rather deals with what “might be the case,” i.e., with possibilities. In this paper we provide an algebraic framework which allows us to analyze in depth the modal aspects of MWI. Within our general formal scheme we also provide a formal comparison between MWI and MI, in particular, we provide a formal understanding of why—even though both interpretations share the same formal structure—MI fall pray of Kochen–Specker-type contradictions while MWI escape them.

1.
Bacciagaluppi
,
G.
, “
A Kochen Specker theorem in the modal interpretation of quantum mechanics
,”
Int. J. Theor. Phys.
34
,
1205
(
1995
).
2.
Burris
,
S.
and
Sankappanavar
,
H. P.
,
A Course in Universal Algebra
,
Graduate Text in Mathematics
(
Springer-Verlag
,
New York
,
1981
).
3.
Birkhoff
,
G.
and
von Neumann
,
J.
, “
The logic of quantum mechanics
,”
Ann. Math.
37
,
823
(
1936
).
4.
Dieks
,
D.
, “
Probability in the modal interpretations of quantum mechanics
,”
Stud. Hist. Philos. Mod. Phys.
38
,
292
(
2007
).
5.
Dieks
,
D.
, “
The formalism of quantum theory: an objective description of reality
,”
Ann. Phys.
500
,
174
(
1988
).
6.
Deutsch
,
D.
, “
Quantum theory as a universal physical theory
,”
Int. J. Theor. Phys.
24
,
1
(
1985
).
7.
DeWitt
,
B. S.
and
Graham
,
N.
,
The Many-Worlds Interpretation of Quantum Mechanics
(
Princeton University Press
,
Princeton
,
1973
).
8.
Domenech
,
G.
and
Freytes
,
H.
, “
Contextual logic for quantum systems
,”
J. Math. Phys.
46
,
012102
(
2005
).
9.
Domenech
,
G.
,
Freytes
,
H.
, and
de Ronde
,
C.
, “
Scopes and limits of modality in quantum mechanics
,”
Ann. Phys.
15
,
853
(
2006
).
10.
Domenech
,
G.
,
Freytes
,
H.
, and
de Ronde
,
C.
, “
A topological study of contextuality and modality in quantum mechanics
,”
Int. J. Theor. Phys.
47
,
168
(
2008
).
11.
Everett
,
H.
, “
‘Relative state’ formulation of quantum mechanics
,”
Rev. Mod. Phys.
29
,
454
(
1957
).
12.
Hemmo
,
M.
, “
Quantum mechanics without collapse: Modal interpretations, histories and many worlds
,” Ph.D. dissertation,
University of Cambridge
,
1996
.
13.
Iskander
,
A.
, “
Factorable congruences and strict refinement
,”
Acta Math. Univ. Comen.
65
,
101
(
1996
).
14.
Jauch
,
J. M.
,
Foundations of Quantum Mechanics
(
Addison-Wesley
,
Reading, MA
,
1968
).
15.
Kalman
,
J. A.
, “
Lattices with involution
,”
Trans. Am. Math. Soc.
87
,
485
(
1958
).
16.
Kalmbach
,
G.
,
Ortomodular Lattices
(
Academic
,
London
,
1983
).
17.
Kochen
,
S.
and
Specker
,
E.
, “
On the problem of hidden variables in quantum mechanics
,”
J. Math. Mech.
17
,
59
(
1967
).
18.
Kochen
,
S.
, in
Symposium on the Foundations of Modern Physics
,
1985
, edited by
Lathi
,
P.
and
Mittelslaedt
,
P.
(
World Scientific
,
Johensuu
,
1985
), pp.
151
169
.
19.
Maeda
,
F.
and
Maeda
,
S.
,
Theory of Symmetric Lattices
(
Springer-Verlag
,
Berlin
,
1970
).
20.
Wheeler
,
J. A.
, “
Assessment of Everett’s ‘relative state’ formulation of quantum mechanics
,”
Rev. Mod. Phys.
29
,
463
(
1957
).
21.
van Fraassen
,
B. C.
, in
Contemporary Research in the Foundations and Philosophy of Quantum Theory
, edited by
Hooker
,
C. A.
(
Reidel
,
Dordrecht
,
1973
).
You do not currently have access to this content.