In this paper we address several aspects of flat Bogomolnyi–Prasad–Sommerfeld (BPS) domain walls together with their Lorentz invariant vacua of four-dimensional N=1 supergravity coupled to a chiral multiplet. The scalar field spans a one-parameter family of two-dimensional Kähler manifolds satisfying a Kähler–Ricci flow equation. We find that BPS equations and the scalar potential deform with respect to the real parameter related to the Kähler–Ricci soliton. In addition, the analysis using gradient and renormalization group flows is carried out to ensure the existence of Lorentz invariant vacua related to anti-de Sitter/conformal field theory correspondence.

1.
B. E.
Gunara
and
F. P.
Zen
,
Adv. Theor. Math. Phys.
13
,
217
(
2009
) and references therein.
2.
B. E.
Gunara
and
F. P.
Zen
,
Commun. Math. Phys.
287
,
849
(
2009
) and references therein.
3.
B. E.
Gunara
,
F. P.
Zen
, and
Arianto
,
J. Math. Phys.
48
,
053505
(
2007
) and references therein.
4.
H. -D.
Cao
, in
Elliptic and Parabolic Methods in Geometry
, edited by
B.
Chow
,
R.
Gulliver
,
S.
Levy
, and
J.
Sullivan
(
A K Peters
,
Wellesley, MA
,
1996
), p.
1
.
5.
P.
Topping
,
Lectures on Ricci Flow
,
London Mathematical Society Lecture Note Series
Vol.
325
(
Cambridge University Press
,
Cambridge
,
2006
) and references therein.
6.
H. -D.
Cao
and
X. -P.
Zhu
,
Asian J. Math.
10
,
165
(
2006
) and references therein.
7.
J.
Wess
and
J.
Bagger
,
Supersymmetry and Supergravity
, 2nd ed. (
Princeton University Press
,
Princeton
,
1992
) and references therein.
8.
D. Z.
Freedman
,
S. S.
Gubser
,
K.
Pilch
, and
N. P.
Warner
,
Adv. Theor. Math. Phys.
3
,
363
(
1999
).
9.
A.
Ceresole
,
G.
Dall’Agata
,
R.
Kallosh
, and
A.
van Proeyen
,
Phys. Rev. D
64
,
104006
(
2001
).
You do not currently have access to this content.