In a recent paper, we proved that a large class of spacetimes, not necessarily homogeneous or isotropous and relevant at a cosmological level, possesses a preferred codimension 1 submanifold, i.e., the past cosmological horizon, on which it is possible to encode the information of a scalar field theory living in the bulk. Such bulk-to-boundary reconstruction procedure entails the identification of a preferred quasifree algebraic state for the bulk theory, enjoying remarkable properties concerning invariance under isometries (if any) of the bulk and energy positivity and reducing to well-known vacua in standard situations. In this paper, specializing to open Friedmann–Robertson–Walker models, we extend previously obtained results and we prove that the preferred state is of Hadamard form, hence the backreaction on the metric is finite and the state can be used as a starting point for renormalization procedures. Such state could play a distinguished role in the discussion of the evolution of scalar fluctuations of the metric, an analysis often performed in the development of any model describing the dynamic of an early Universe which undergoes an inflationary phase of rapid expansion in the past.

1.
Allen
,
B.
, “
Vacuum states in the Sitter space
,”
Phys. Rev. D
32
,
3136
(
1985
).
2.
Bardeen
,
J. M.
,
Steinhardt
,
P. J.
, and
Turner
,
M. S.
, “
Spontaneous creation of almost scale-free density perturbations in an inflationary universe
,”
Phys. Rev. D
28
,
679
(
1983
).
3.
Bär
,
C.
,
Ginoux
,
N.
, and
Pfäffle
,
F.
, “
Wave equations on Lorentzian manifolds, and quantization
,”
ESI Lectures in Mathematics, and Physics
, (
European Mathematical Society
,
Zürich
,
2007
).
4.
Bernal
,
A. N.
, and
Sánchez
,
M.
, “
Further results on the smoothability of Cauchy hypersurfaces, and Cauchy time functions
,”
Lett. Math. Phys.
77
,
183
(
2006
).
5.
Bratteli
,
O.
, and
Robinson
,
D. W.
,
Operator Algebras, and Quantum Statistical Mechanics
2nd ed. (
Springer-Verlag
,
Berlin
,
2002
), Vol.
1
.
6.
Bratteli
,
O.
, and
Robinson
,
D. W.
,
Operator Algebras, and Quantum Statistical Mechanics
2nd ed. (
Springer
),
New York
,
2002
), Vol.
2
.
7.
Brunetti
,
R.
, and
Fredenhagen
,
K.
, “
Microlocal analysis, and interacting quantum field theories: Renormalization on physical backgrounds
,”
Commun. Math. Phys.
208
,
623
(
2000
).
8.
Brunetti
,
R.
,
Fredenhagen
,
K.
, and
Köhler
,
M.
, “
The microlocal spectrum condition, and Wick polynomials of free fields on curved spacetimes
,”
Commun. Math. Phys.
180
,
633
(
1996
).
9.
Brunetti
,
R.
,
Fredenhagen
,
K.
, and
Verch
,
R.
, “
The generally covariant locality principle: A new paradigm for local quantum field theory
,”
Commun. Math. Phys.
237
,
31
(
2003
).
10.
Bunch
,
T. S.
, and
Davies
,
P. C. W.
, “
Quantum fields theory in de Sitter space: Renoramlization by point-splitting
,”
Proc. R. Soc. London, Ser. A
360
,
117
(
1978
).
11.
Dappiaggi
,
C.
,
Fredenhagen
,
K.
, and
Pinamonti
,
N.
, “
Stable cosmological models driven by a free quantum scalar field
,”
Phys. Rev. D
77
,
104015
(
2008
).
12.
Dappiaggi
,
C.
,
Moretti
,
V.
, and
Pinamonti
,
N.
, “
Rigorous steps towards holography in asymptotically flat spacetimes
,”
Rev. Math. Phys.
18
,
349
(
2006
).
13.
Dappiaggi
,
C.
,
Moretti
,
V.
, and
Pinamonti
,
N.
, “
Cosmological horizons, and reconstruction of quantum field theories
,”
Commun. Math. Phys.
285
,
1129
(
2009
).
14.
Dappiaggi
,
C.
, “
Projecting massive scalar fields to null infinity
,”
Ann. Henri Poincare
9
,
35
(
2008
).
15.
Duetsch
,
M.
, and
Rehren
,
K. H.
, “
Generalized free fields, and the AdS-CFT correspondence
,”
Ann. Henri Poincare
4
,
613
(
2003
).
16.
Duistermaat
,
J. J.
, and
Hörmander
,
L.
, “
Fourier integral operators II
,”
Acta Math.
128
,
183
(
1972
).
17.
Gradshteyn
,
I. S.
, and
Ryzhik
,
I. M.
,
Table of Integrals, Series, and Products
, 5th Ed. (
Academic
,
New York
,
1995
).
18.
Hollands
,
S.
, “
Aspects of quantum field theory in curved spacetime
,” Ph.D. thesis,
University of York
,
2000
.
19.
Hollands
,
S.
, and
Wald
,
R. M.
, “
Conservation of the stress tensor in interacting quantum field theory in curved spacetimes
,”
Rev. Math. Phys.
17
,
227
(
2005
).
20.
Hollands
,
S.
, and
Wald
,
R. M.
, “
An alternative to inflation
,”
Gen. Relativ. Gravit.
34
,
2043
(
2002
).
21.
Hollands
,
S.
, and
Wald
,
R. M.
, “
Local Wick polynomials, and time ordered products of quantum fields in curved spacetime
,”
Commun. Math. Phys.
223
,
289
(
2001
).
22.
’t Hooft
,
G.
, “
Dimensional reduction in quantum gravity
,” e-print arXiv:gr-qc∕9310026.
23.
Hörmander
,
L.
, “
Fourier integral operators. I.
,”
Acta Math.
127
,
79
(
1971
).
24.
Hörmander
,
L.
,
The Analysis of Linear Partial Differential Operators
(
Springer
,
New York
,
1989
), Vol.
I
.
25.
Junker
,
W.
, and
Schrohe
,
E.
, “
Adiabatic vacuum states on general spacetime manifolds: Definition, construction, and physical properties
,”
Ann. Henri Poincare
3
,
1113
(
2002
).
26.
Kay
,
B. S.
, and
Wald
,
R. M.
, “
Theorems on the uniqueness, and thermal properties of stationary, nonsingular, quasifree states on space-times with a bifurcate killing horizon
,”
Phys. Rep.
207
,
49
(
1991
).
27.
Kirsten
,
K.
, and
Garriga
,
J.
, “
Massless minimally coupled fields in de Sitter space: O(4) symmetric states versus de Sitter invariant vacuum
,”
Phys. Rev. D
48
,
567
(
1993
).
28.
Küskü
,
M.
, “
A class of almost equilibrium states in Robertson-Walker spacetimes
,” thesis, Desy,
2008
.
29.
Linde
,
A.
,
Particle Physics and Inflationary Cosmology
(
Harwood, Academic
, Chur,
1996
).
30.
Lüders
,
C.
, and
Roberts
,
J. E.
, “
Local quasiequivalence, and adiabatic vacuum states
,”
Commun. Math. Phys.
134
,
29
(
1990
).
31.
Moretti
,
V.
, “
Comments on the stress energy tensor operator in curved space-time
,”
Commun. Math. Phys.
232
,
189
(
2003
).
32.
Moretti
,
V.
, “
Uniqueness theorem for BMS-invariant states of scalar QFT on the null boundary of asymptotically flat spacetimes, and bulk-boundary observable
,”
Commun. Math. Phys.
268
,
727
(
2006
).
33.
Moretti
,
V.
, “
Quantum out-states states holographically induced by asymptotic flatness: Invariance under spacetime symmetries, energy positivity, and Hadamard property
,”
Commun. Math. Phys.
279
,
31
(
2008
).
34.
Moretti
,
V.
, and
Pinamonti
,
N.
, “
Quantum Virasoro algebra with central charge c=1 on the event horizon of a 2D Rindler spacetime
,”
J. Math. Phys.
45
,
257
(
2004
).
35.
Mukhanov
,
V. F.
,
Feldman
,
H. A.
, and
Brandenberger
,
R. H.
, “
Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions
,”
Phys. Rep.
215
,
203
(
1992
).
36.
Olbermann
,
H.
, “
States of low energy on Robertson-Walker spacetimes
,”
Class. Quantum Grav.
24
,
5011
(
2007
).
37.
Radzikowski
,
M. J.
, “
Micro-local approach to the Hadamard condition in quantum field theory on curved space-time
,”
Commun. Math. Phys.
179
,
529
(
1996
).
38.
Radzikowski
,
M. J.
, “
A Local to global singularity theorem for quantum field theory on curved space-time
,”
Commun. Math. Phys.
180
,
1
(
1996
).
39.
Rehren
,
K. H.
, “
Local quantum observables in the anti-deSitter—conformal QFT correspondence
,”
Phys. Lett. B
493
,
383
(
2000
).
40.
Ribeiro
,
P. L.
, “
Structural, and dynamical aspects of the AdS∕CFT correspondence: a rigorous approach
,” Ph.D thesis,
University of Sao Paolo
,
2007
.
41.
Rindler
,
W.
,
Relativity. Special, General, and Cosmological
, 2nd ed. (
Oxford University Press
,
Oxford
,
2006
).
42.
Rudin
,
W.
,
Functional Analysis
(
McGraw-Hill
,
New York
,
1973
).
43.
Sahlmann
,
H.
, and
Verch
,
R.
, “
Microlocal spectrum condition, and Hadamard form for vector valued quantum fields in curved space-time
,”
Rev. Math. Phys.
13
,
1203
(
2001
).
44.
Sanders
,
J. A.
, “
Aspects of locally covariant quantum field theory
,” Ph.D thesis,
University of York
,
2008
.
45.
Schomblond
,
C.
, and
Spindel
,
P.
, “
Conditions d’unicité pour le propagateur Δ(1)(x,y) du champ scalaire dans l’univers de de Sitter
,”
Ann. Inst. Henri Poincare, Sect. A
25
,
67
(
1976
).
46.
Strohmaier
,
A.
,
Verch
,
R.
, and
Wollenberg
,
M.
, “
Microlocal analysis of quantum fields on curved space-times: analytic wavefront sets and Reeh-Schlieder theorems
,”
J. Math. Phys.
43
,
5514
(
2002
).
47.
Wald
,
R. M.
,
General Relativity
(
Chicago University Press
,
Chicago
,
1984
).
48.
Wald
,
R. M.
,
Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics
(
The University of Chicago Press
,
Chicago
,
1994
).
You do not currently have access to this content.