We consider second-quantized homogeneous Bose gas in a large cubic box with periodic boundary conditions at zero temperature. We discuss the energy-momentum spectrum of the Bose gas and its physical significance. We review various rigorous and heuristic results as well as open conjectures about its properties. Our main aim is to convince the readers, including those with mainly mathematical background, that this subject has many interesting problems for rigorous research. In particular, we investigate the upper bound on the infimum of the energy for a fixed total momentum k given by the expectation value of one-particle excitations over a squeezed states. This bound can be viewed as a rigorous version of the famous Bogoliubov method. We show that this approach seems to lead to a (nonphysical) energy gap. The variational problem involving squeezed states can serve as the preparatory step in a perturbative approach that should be useful in computing excitation spectrum. This version of a perturbative approach to the Bose gas seems (at least in principle) superior to the commonly used approach based on the c-number substitution.

1.
Beliaev
,
S. T.
, “
Energy spectrum of a non-ideal Bose gas
,”
Sov. Phys. JETP
7
,
299
(
1958
) ,
reprinted in
D.
Pines
,
The Many-Body Problem
(
W. A. Benjamin
,
New York
,
1962
)
2.
Bijl
,
A.
, “
The lowest wave function of the symmetrical many particles system
,”
Physica (Amsterdam)
7
,
869
(
1940
);
Bijl
,
A.
,
de Boer
,
J.
, and
Michels
,
A.
, “
Properties of liquid helium II
,”
Physica (Amsterdam)
8
,
655
(
1941
).
3.
Bogoliubov
,
N. N.
, “
On the theory of superfluidity
,”
J. Phys. (USSR)
11
,
23
(
1947
);
reprinted in
D.
Pines
,
The Many-Body Problem
(
W.A. Benjamin
,
New York
,
1962
).
4.
Bogoliubov
,
N. N.
,
“Quasi-Averages in Problems of Statistical Mechanics
(
Naukova Dumka
,
Kiev
,
1971
), Vol.
3
, pp.
174
243
.
5.
Brueckner
,
K. A.
and
Sawada
,
K.
, “
Bose-Einstein gas with repulsive interactions: General theory
,”
Phys. Rev.
106
,
1117
(
1957
).
6.
Critchley
,
R. H.
and
Solomon
,
A. I.
, “
A variational approach to superfluidity
,”
J. Stat. Phys.
14
,
381
(
1976
).
7.
Erdős
,
L.
,
Schlein
,
B.
and
Yau
,
H. -T.
, “
The ground state energy of a low density Bose gas: a second order upper bound
,”
Phys. Rev. A
78
,
053627
(
2008
).
8.
Feynmann
,
R.
, in
Progress in Low Temperature Physics
, edited by
Gorter
,
C. J.
(
North-Holland
,
Amsterdam
,
1955
), Vol.
1
, Chap. 2.
9.
Gavoret
,
J.
and
Nozières
,
P.
, “
Structure of the perturbation expansion for the Bose liquid at zero temperature
,”
Ann. Phys.
28
,
349
(
1964
).
10.
Girardeau
,
M. D.
, “
Relationship between systems of impenetrable bosons and fermions in one dimension
,”
J. Math. Phys.
1
,
516
(
1960
).
11.
Girardeau
,
M.
and
Arnowitt
,
R.
, “
Theory of many-boson systems: Pair theory
,”
Phys. Rev.
113
,
755
(
1959
).
12.
Hohenberg
,
P. C.
, “
Existence of long-range order in one and two dimensions
,”
Phys. Rev.
158
,
383
(
1967
).
13.
Huang
,
K.
,
Statistical Mechanics
(
Wiley
,
New York
,
1963
).
14.
Hugenholtz
,
N. M.
, and
Pines
,
D.
, “
Ground state energy and excitation spectrum of a system of interacting bosons
,”
Phys. Rev.
116
,
489
(
1959
).
15.
Landau
,
L. D.
, and
Lifschitz
,
E. M.
,
Statistical Physics
(
Nauka
,
Moscow
,
1978
).
16.
Lee
,
T. D.
,
Huang
,
K.
, and
Yang
,
C. N.
, “
Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties
,”
Phys. Rev.
106
,
1135
(
1957
).
17.
Leggett
,
A. J.
, “
Superfluidity
,”
Rev. Mod. Phys.
71
,
S318
(
1999
).
18.
Lieb
,
E. H.
, “
Simplified approach to the ground state energy of an imperfect Bose gas
,”
Phys. Rev.
130
,
2518
(
1963
).
19.
Lieb
,
E. H.
, “
Exact analysis of an interacting Bose gas. II. The excitation spectrum
,”
Phys. Rev.
130
,
1616
(
1963
).
20.
Lieb
,
E. H.
and
Liniger
,
W.
, “
Exact analysis of an interacting Bose gas. I. The general solution and the ground state
,”
Phys. Rev.
130
,
1605
(
1963
).
21.
Lieb
,
E. L.
,
Seiringer
,
R.
, and
Yngvason
,
J.
, “
Superfluidity of dilute trapped Bose gases
,”
Phys. Rev. B
66
,
134529
(
2002
).
22.
Lieb
,
E. L.
,
Seiringer
,
R.
, and
Yngvason
,
J.
, “
Justification of c
-number substitutions in bosonic Hamiltonians,”
Phys. Rev. Lett.
94
,
080401
(
2005
).
23.
Lieb
,
E. L.
,
Seiringer
,
R.
,
Solovej
,
J. P.
, and
Yngvason
,
J.
,
Oberwolfach Seminars
(
Birkhäuser
,
Basel, Switzerland
,
2005
).
24.
Maris
,
H. J.
, “
Phonon-phonon interactions in liquid helium
,”
Rev. Mod. Phys.
49
,
341
(
1977
).
25.
Pines
,
D.
and
Woo
,
C. -W.
, “
Sum rules, structure factors, and phonon dispersion in liquid He4
at long wavelengths and low temperatures,”
Phys. Rev. Lett.
24
,
1044
(
1970
).
26.
Pitaevskii
,
L.
and
Stringari
,
S.
, “
Uncertainty principle, quantum fluctuations, and broken symmetries
,”
J. Low Temp. Phys.
85
,
377
(
1991
).
27.
Popov
,
V. N.
,
Functional Integrals in Quantum Field Theory and Statistical Physics
(
Reidel
,
Dordrecht
,
1983
).
28.
Price
,
P. J.
, “
Density fluctuations at low temperatures
,”
Phys. Rev.
94
,
257
(
1954
).
29.
Puff
,
R. D.
, “
Application of sum rules to the low-temperature interacting boson system
,”
Phys. Rev.
137
,
A406
(
1965
).
30.
Raman
,
C.
,
Kohl
,
M.
,
Onofrio
,
R.
,
Durfee
,
D. S.
,
Kuklewicz
,
C. E.
,
Hadzibabic
,
Z.
, and
Ketterle
,
W.
, “
Evidence for a critical velocity in a Bose Einstein condensed gas
,”
Phys. Rev. Lett.
83
,
2502
(
1999
).
31.
Robinson
,
D. W.
, “
On the ground state energy of the Bose gas
,”
Commun. Math. Phys.
1
,
159
(
1965
).
32.
Solovej
,
J. P.
, “
Upper bounds to the ground state energies of the one- and two-component charged Bose gases
,”
Commun. Math. Phys.
266
,
797
(
2006
).
33.
Steinhauer
,
J.
,
Ozeri
,
R.
,
Katz
,
N.
, and
Davidson
,
N.
, “
Excitation spectrum of a Bose-Einstein condensate
,”
Phys. Rev. Lett.
88
,
120407
(
2002
).
34.
Stringari
,
S.
, “
Sum rules for density and particle excitations in Bose superfluids
,”
Phys. Rev. B
46
,
2974
(
1992
).
35.
Stringari
,
S.
,
International Workshop on Bose-Einstein Condensation
, Levico, Italy,
1993
(unpublished).
36.
Takano
,
F.
, “
Excitation spectrum in many-boson systems
,”
Phys. Rev.
123
,
699
(
1961
).
37.
Takesaki
,
H.
,
Theory of Operator Algebras III
(
Springer
,
New York
,
2003
).
38.
van Hove
,
L.
, “
Correlations in space and time and Born approximation scattering in systems of interacting particles
,”
Phys. Rev.
95
,
249
(
1954
).
39.
Wagner
,
H.
, “
Long-wavelength excitations and the Goldstone theorem in many-particle systems with “broken symmetries”
,”
Z. Phys.
195
,
273
(
1966
).
40.
Woods
,
A. D. B.
and
Cowley
,
R. A.
, “
Structure and excitations of liquid helium
,”
Rep. Prog. Phys.
36
,
1135
(
1973
).
41.
Wreszinski
,
W. F.
and
da Silva
,
M. A.
, Jr.
, “
Onsager’s inequality, the Landau-Feynmann ansatz and superfluidity
,”
J. Phys. A
38
,
6293
(
2005
).
42.
Zagrebnov
,
V. A.
and
Bru
,
J. B.
, “
The Bogoliubov model of weakly imperfect Bose gas
,”
Phys. Rep.
350
,
291
(
2001
).
You do not currently have access to this content.