A complete solution to the problem of orthogonal separation of variables of the Hamilton–Jacobi equation in three-dimensional Minkowski space is obtained. The solution is based on the underlying ideas of Cartan geometry and ultimately developed into a general new algorithm that can be employed in the study of Hamiltonian systems defined by natural Hamiltonians within the framework of Hamilton–Jacobi theory. To demonstrate its effectiveness, we investigate from this viewpoint the Morosi–Tondo integrable system derived as a stationary reduction of the seventh-order Korteweg–de Vries flow to show explicitly that the system in question is an orthogonally separable Hamiltonian system. The latter result is a new characterization of the Morosi–Tondo system.

1.
Adlam
,
C. M.
,
McLenaghan
,
R. G.
, and
Smirnov
,
R. G.
, “
On geometric properties of joint invariants of Killing tensors
,” in
Symmetries and Overdetermined Systems of Partial Differential Equations
, The IMA Volumes in Mathematics and its Applications Vol.
144
, edited by
Eastwood
,
M.
and
Miller
, Jr.,
W.
(
Springer-Verlag
,
New York
,
2008
), pp.
205
222
.
2.
Benenti
,
S.
, “
Intrinsic characterization of the variable separation in the Hamilton-Jacobi equation
,”
J. Math. Phys.
38
,
6578
(
1997
).
3.
Benenti
,
S.
,
Chanu
,
C.
, and
Rastelli
,
G.
, “
The super-integrability of the three body inverse-square Calogero system
,”
J. Math. Phys.
41
,
4654
(
2000
).
4.
Boyer
,
C. P.
,
Kalnins
,
E. G.
, and
Miller
, Jr. 
W.
, “
Symmetry and separation of variables for the Helmholtz and Laplace equations
,”
Nagoya Math. J.
60
,
35
(
1976
).
5.
Boyer
,
C. P.
,
Kalnins
,
E. G.
, and
Miller
, Jr.,
W.
, “
Symmetry and separation of variables for the Hamilton-Jacobi equation Wt2Wx2Wy2=0
,”
J. Math. Phys.
19
,
200
(
1978
).
6.
Cartan
,
E.
,
La Théorie des Groups Finis et Continus et la Géométrie Différentielle, Traitées par la Méthode du Repère Mobile
(
Gauthier-Villars
,
Paris
,
1937
).
7.
Cartan
,
E.
,
Riemannian Geometry in an Orthonormal Frame
(translation from Russian by V. V. Goldberg) (
World Scientific
,
Singapore
,
2001
).
8.
Chanachowicz
,
M.
,
Chanu
,
C.
, and
McLenaghan
,
R. G.
, “
Invariant classification of the rotationally symmetric R-separable webs for the Laplace equation in Euclidean space
,”
J. Math. Phys.
49
,
013511
(
2008
).
9.
Eisenhart
,
L. P.
, “
Separable systems of Stäckel
,”
Ann. Math.
35
,
284
(
1934
).
10.
Fels
,
M. E.
and
Olver
,
P. J.
, “
Moving coframes. I. A practical algorithm
,”
Acta Appl. Math.
51
,
161
(
1998
).
11.
Fels
,
M. E.
and
Olver
,
P. J.
, “
Moving coframes. II. Regularization and theoretical foundations
,”
Acta Appl. Math.
55
,
127
(
1999
).
12.
Griffiths
,
P.
, “
On Cartan’s method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry
,”
Duke Math. J.
41
,
775
(
1974
).
13.
Hinterleitner
,
F.
, “
Global properties of orthogonal separable coordinates for the Klein-Gordon equation in 2+1 dimensional flat space-time
,”
Sitzungsber. Abt. II
207
,
133
(
1998
).
14.
Horwood
,
J. T.
, “
On the theory of algebraic invariants of vector spaces of Killing tensors
,”
J. Geom. Phys.
58
,
487
(
2008
).
15.
Horwood
,
J. T.
and
McLenaghan
,
R. G.
, “
Orthogonal separation of variables for the Hamilton-Jacobi and wave equations in three-dimensional Minkowski space
,”
J. Math. Phys.
49
,
023501
(
2008
).
16.
Horwood
,
J. T.
McLenaghan
,
R. G.
, and
Smirnov
,
R. G.
, “
Invariant classification of orthogonally separable Hamiltonian systems in Euclidean space
,”
Commun. Math. Phys.
259
,
679
(
2005
).
17.
Kalnins
,
E. G.
, “
On the separation of variables for the Laplace equation Δψ+K2ψ=0 in two- and three-dimensional Minkowski space
,”
SIAM J. Math. Anal.
6
,
340
(
1975
).
18.
Kalnins
,
E. G.
,
Separation of Variables for Riemannian Spaces of Constant Curvature
(
Longman Scientific & Technical
,
New York
,
1986
).
19.
Kalnins
,
E. G.
,
Kress
,
J. M.
, and
Miller
, Jr. 
W.
, “
Second order superintegrable systems in conformally flat spaces. III. Three-dimensional classical structure theory
,”
J. Math. Phys.
46
,
103507
(
2005
).
20.
Kalnins
,
E. G.
and
Miller
, Jr. 
W.
, “
Lie theory and separation of variables. VIII. Semi-subgroup coordinates for the ΨttΔ2Ψ=0
,”
J. Math. Phys.
16
,
2507
(
1975
).
21.
Kalnins
,
E. G.
and
Miller
, Jr.,
W.
, “
Lie theory and separation of variables. IX. Orthogonal R-separable coordinate systems for the wave equation ΨttΔ2Ψ=0
,”
J. Math. Phys.
17
,
331
(
1976
).
22.
Kalnins
,
E. G.
and
Miller
, Jr. 
W.
, “
Lie theory and separation of variables. X. Nonorthogonal R-separable solutions of the wave equation ttΨ=Δ2Ψ
,”
J. Math. Phys.
17
,
356
(
1976
).
23.
Kalnins
,
E. G.
and
Miller
, Jr. 
W.
, “
Lie theory and the wave equation in space-time. IV. The Klein-Gordon equation and the Poincaré group
,”
J. Math. Phys.
19
,
1233
(
1978
).
24.
McLenaghan
,
R. G.
,
Milson
,
R.
, and
Smirnov
,
R. G.
, “
Killing tensors as irreducible representations of the general linear group
,”
C. R. Acad. Sci., Ser. I: Math.
339
,
621
(
2004
).
25.
McLenaghan
,
R. G.
,
Smirnov
,
R. G.
, and
The
,
D.
, “
Group invariant classification of separable Hamiltonian systems in the Euclidean plane and the O(4)-symmetric Yang-Mills theories of Yatsun
,”
J. Math. Phys.
43
,
1422
(
2002
).
26.
Miller
, Jr. 
W.
,
Symmetry and Separation of Variables
(
Addison-Wesley
,
Reading, MA
,
1977
).
27.
Morosi
,
C.
and
Tondo
,
G.
, “
Quasi-bi-Hamiltonian systems and separability
,”
J. Phys. A
30
,
2799
(
1997
).
28.
Nijenhuis
,
A.
, “
Xn1-forming sets of eigenvectors
,”
Neder. Akad. Wetensch. Proc.
51A
,
200
(
1951
).
29.
Olevsky
,
M. N
, “
Three orthogonal systems in spaces of constant curvature in which the equation Δ2u+λu=0 admits a complete separation of variables
,”
Math. USSR. Sb.
27
,
379
(
1950
).
30.
Olver
,
P. J.
,
Classical Theory of Invariants
(
Cambridge University Press
,
Cambridge
,
1999
).
31.
Rauch-Wojciechowski
,
S.
and
Waksjö
,
C.
, “
What an effective criterion of separability says about the Calogero type systems
,”
J. Nonlinear Math. Phys.
12
,
535
(
2005
).
32.
Schouten
,
J. A.
,
Ricci Calculus
, 2nd ed. (
Springer-Verlag
,
Berlin
,
1954
).
33.
Schouten
,
J. A.
, “
Über Differentialkomitanten zweier kontravarianter Grössen
,”
Proc. K. Ned. Akad. Wet.
43
,
449
(
1940
).
34.
Sharpe
,
R. W.
,
Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program
(
Springer-Verlag
,
New York
,
1996
).
35.
Smirnov
,
R. G.
and
Yue
,
J.
, “
Covariants, joint invariants and the problem of equivalence in the invariant theory of Killing tensors defined in pseudo-Riemannian spaces of constant curvature
,”
J. Math. Phys.
45
,
4141
(
2004
).
36.
Tonolo
,
A.
, “
Sulle varietà Riemanniane normali a tre dimensioni
,”
Pontif. Acad. Sci. Scr. Varia
13
,
29
(
1949
).
37.
Warner
,
F. W.
,
Foundations of Differential Manifolds and Lie Groups
(
Springer-Verlag
,
New York
,
1983
).
38.
Winternitz
,
P.
and
Friš
,
I.
, “
Invariant expansions of relativistic amplitudes and sub-groups of the proper Lorenz group
,”
Sov. J. Nucl. Phys.
1
,
636
(
1965
).
You do not currently have access to this content.