In this paper, we use the method of calculus of variations to develop an existence theory for the steady state solutions of a nonlinear Schrödinger equation modeling light waves propagating in a photorefractive crystal. We show via direct minimization and mountain-pass argument that there exist steady state solutions realizing a continuous spectrum of energy points or wavenumbers.

1.
Arecchi
,
F. T.
,
Boccaletti
,
S.
, and
Ramazza
,
P. L.
, “
Pattern formation and competition in nonlinear optics
,”
Phys. Rep.
318
,
1
(
1999
).
2.
Baillon
,
J. -B.
,
Cazenave
,
T.
, and
Figueira
,
M.
, “
Équation de Schrödinger non linéaire
,”
C. R. Acad. Sci. Paris
284,
869
(
1977
).
3.
Bartal
,
G.
,
Manela
,
O.
,
Cohen
,
O.
,
Fleischer
,
J. W.
, and
Segev
,
M.
, “
Observation of second-band vortex solitons in 2D photonic lattices
,”
Phys. Rev. Lett.
95
,
053904
(
2005
).
4.
Buryak
,
A. V.
,
Kivshar
,
Y. S.
,
Shih
,
M. -F.
, and
Segev
,
M.
, “
Induced coherence and stable soliton spiraling
,”
Phys. Rev. Lett.
82
,
81
(
1999
).
5.
Cross
,
M. C.
and
Hohenberg
,
P. C.
, “
Pattern formation outside of equilibrium
,”
Rev. Mod. Phys.
65
,
851
(
1993
).
6.
Desyatnikov
,
A. S.
,
Torner
,
L.
, and
Kivshar
,
Y. S.
, “
Optical vortices and vortex solitons
,”
Prog. Opt.
47
,
291
(
2005
).
7.
Evans
,
L. C.
,
Partial Differential Equations
(
AMS
,
Sunrise, FL
,
1998
).
8.
Fleischer
,
J. W.
,
Bartal
,
G.
,
Cohen
,
O.
,
Manela
,
O.
,
Segev
,
M.
,
Hudock
,
J.
, and
Christodoulides
,
D. N.
, “
Observation of vortex-ring ‘discrete’ solitons in 2D photonic lattices
,”
Phys. Rev. Lett.
92
,
123904
(
2004
).
9.
Fleischer
,
J. W.
,
Segev
,
M.
,
Efremidis
,
N. K.
, and
Christodoulides
,
D. N.
, “
Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices
,”
Nature (London)
422
,
147
(
2003
).
10.
Ginibre
,
J.
and
Velo
,
G.
, “
On a class of nonlinear Schrödinger equations
,”
J. Funct. Anal.
32
,
1
(
1979
).
11.
Glassey
,
R.
, “
On the blowing-up of solutions to the Cauchy problem for nonlinear Schrödinger equations
,”
J. Math. Phys.
18
,
1794
(
1977
).
12.
Kartashov
,
Y. V.
,
Egorov
,
A. A.
,
Vysloukh
,
V. A.
, and
Torner
,
L.
, “
Surface vortex solitons
,”
Opt. Express
14
,
4049
(
2006
).
13.
Kato
,
T.
, “
On nonlinear Schrödinger equations
,”
Ann. Inst. Henri Poincare, Sect. A
46
,
113
(
1987
).
14.
Klausmeier
,
C. A.
, “
Regular and irregular patterns in semiarid vegetation
,”
Science
284
,
1826
(
1999
).
15.
Koch
,
A. J.
and
Meinhardt
,
H.
, “
Biological pattern formation: From basic mechanisms to complex structures
,”
Rev. Mod. Phys.
66
,
1481
(
1994
).
16.
Meinhardt
,
H.
, “
Pattern formation in biology: A comparison of models and experiments
,”
Rep. Prog. Phys.
55
,
797
(
1992
).
17.
Meinhardt
,
H.
,
Models of Biological Pattern Formation
(
Academic
,
San Diego, CA
,
1997
).
18.
Meinhardt
,
H.
, “
Dynamics of stripe formation
,”
Nature (London)
376
,
722
(
2002
).
19.
Mouritsen
,
O. G.
, “
Pattern formation in condensed matter
,”
Int. J. Mod. Phys. B
4
,
1925
(
1990
).
20.
Neshev
,
D. N.
,
Alexander
,
T. J.
,
Ostrovskaya
,
E. A.
,
Kivshar
,
Y. S.
,
Martin
,
H.
,
Makasyuk
,
I.
, and
Chen
,
Z.
, “
Observation of discrete vortex solitons in optically induced photonic lattices
,”
Phys. Rev. Lett.
92
,
123903
(
2004
).
21.
Strauss
,
W. A.
,
Nonlinear Wave Equations
,
AMS Regional Conference Series in Mathematics
No. 73 (
AMS
,
Sunrise, FL
,
1989
).
22.
Zakharov
,
V. E.
and
Shabat
,
A. B.
, “
Interaction between solitons in a stable medium
,”
Sov. Phys. JETP
37
,
823
(
1973
).
You do not currently have access to this content.