In this paper, we use the method of calculus of variations to develop an existence theory for the steady state solutions of a nonlinear Schrödinger equation modeling light waves propagating in a photorefractive crystal. We show via direct minimization and mountain-pass argument that there exist steady state solutions realizing a continuous spectrum of energy points or wavenumbers.
REFERENCES
1.
Arecchi
, F. T.
, Boccaletti
, S.
, and Ramazza
, P. L.
, “Pattern formation and competition in nonlinear optics
,” Phys. Rep.
318
, 1
(1999
).2.
Baillon
, J. -B.
, Cazenave
, T.
, and Figueira
, M.
, “Équation de Schrödinger non linéaire
,” C. R. Acad. Sci. Paris
284, 869
(1977
).3.
Bartal
, G.
, Manela
, O.
, Cohen
, O.
, Fleischer
, J. W.
, and Segev
, M.
, “Observation of second-band vortex solitons in 2D photonic lattices
,” Phys. Rev. Lett.
95
, 053904
(2005
).4.
Buryak
, A. V.
, Kivshar
, Y. S.
, Shih
, M. -F.
, and Segev
, M.
, “Induced coherence and stable soliton spiraling
,” Phys. Rev. Lett.
82
, 81
(1999
).5.
Cross
, M. C.
and Hohenberg
, P. C.
, “Pattern formation outside of equilibrium
,” Rev. Mod. Phys.
65
, 851
(1993
).6.
Desyatnikov
, A. S.
, Torner
, L.
, and Kivshar
, Y. S.
, “Optical vortices and vortex solitons
,” Prog. Opt.
47
, 291
(2005
).7.
8.
Fleischer
, J. W.
, Bartal
, G.
, Cohen
, O.
, Manela
, O.
, Segev
, M.
, Hudock
, J.
, and Christodoulides
, D. N.
, “Observation of vortex-ring ‘discrete’ solitons in 2D photonic lattices
,” Phys. Rev. Lett.
92
, 123904
(2004
).9.
Fleischer
, J. W.
, Segev
, M.
, Efremidis
, N. K.
, and Christodoulides
, D. N.
, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices
,” Nature (London)
422
, 147
(2003
).10.
Ginibre
, J.
and Velo
, G.
, “On a class of nonlinear Schrödinger equations
,” J. Funct. Anal.
32
, 1
(1979
).11.
Glassey
, R.
, “On the blowing-up of solutions to the Cauchy problem for nonlinear Schrödinger equations
,” J. Math. Phys.
18
, 1794
(1977
).12.
Kartashov
, Y. V.
, Egorov
, A. A.
, Vysloukh
, V. A.
, and Torner
, L.
, “Surface vortex solitons
,” Opt. Express
14
, 4049
(2006
).13.
Kato
, T.
, “On nonlinear Schrödinger equations
,” Ann. Inst. Henri Poincare, Sect. A
46
, 113
(1987
).14.
Klausmeier
, C. A.
, “Regular and irregular patterns in semiarid vegetation
,” Science
284
, 1826
(1999
).15.
Koch
, A. J.
and Meinhardt
, H.
, “Biological pattern formation: From basic mechanisms to complex structures
,” Rev. Mod. Phys.
66
, 1481
(1994
).16.
Meinhardt
, H.
, “Pattern formation in biology: A comparison of models and experiments
,” Rep. Prog. Phys.
55
, 797
(1992
).17.
Meinhardt
, H.
, Models of Biological Pattern Formation
(Academic
, San Diego, CA
, 1997
).18.
Meinhardt
, H.
, “Dynamics of stripe formation
,” Nature (London)
376
, 722
(2002
).19.
Mouritsen
, O. G.
, “Pattern formation in condensed matter
,” Int. J. Mod. Phys. B
4
, 1925
(1990
).20.
Neshev
, D. N.
, Alexander
, T. J.
, Ostrovskaya
, E. A.
, Kivshar
, Y. S.
, Martin
, H.
, Makasyuk
, I.
, and Chen
, Z.
, “Observation of discrete vortex solitons in optically induced photonic lattices
,” Phys. Rev. Lett.
92
, 123903
(2004
).21.
Strauss
, W. A.
, Nonlinear Wave Equations
, AMS Regional Conference Series in Mathematics
No. 73 (AMS
, Sunrise, FL
, 1989
).22.
Zakharov
, V. E.
and Shabat
, A. B.
, “Interaction between solitons in a stable medium
,” Sov. Phys. JETP
37
, 823
(1973
).© 2009 American Institute of Physics.
2009
American Institute of Physics
You do not currently have access to this content.