We consider (n+1)-dimensional, stationary, asymptotically flat, or Kaluza–Klein asymptotically flat black holes with an Abelian s-dimensional subgroup of the isometry group satisfying an orthogonal integrability condition. Under suitable regularity conditions, we prove that the area of the group orbits is positive on the domain of outer communications Mext, vanishing only on the boundary Mext and on the “symmetry axis” A. We further show that the orbits of the connected component of the isometry group are timelike throughout the domain of outer communications. Those results provide a starting point for the classification of such black holes. Finally, we show nonexistence of zeros of static Killing vectors on degenerate Killing horizons, as needed for the generalization of the static no-hair theorem to higher dimensions.

1.
Anderson
,
M.
,
Chruściel
,
P.
, and
Delay
,
E.
, “
Non-trivial, static, geodesically complete space-times with a negative cosmological constant. II.n5
,”
AdS/CFT Correspondence: Einstein Metrics and Their Conformal Boundaries
,
IRMA Lectures in Mathematics and Theoretical Physics
Vol.
8
(
European Mathematical Society
,
Zürich
,
2005
), pp.
165
204
;
2.
Breitenlohner
,
P.
,
Maison
,
D.
, and
Gibbons
,
G.
, “
4-dimensional black holes from Kaluza-Klein theories
,”
Commun. Math. Phys.
120
,
295
(
1988
).
3.
Bump
,
D.
,
Lie Groups
,
Graduate Texts in Mathematics
(
Springer-Verlag
,
New York
,
2004
), Vol.
225
.
4.
Carter
,
B.
, “
Killing horizons and orthogonally transitive groups in space-time
,”
J. Math. Phys.
10
,
70
(
1969
).
5.
Carter
,
B.
, “
Black hole equilibrium states
,”
Black Holes
, in
Proceedings of the Les Houches Summer School
, edited by
de Witt
,
C.
and
de Witt
,
B.
(
Gordon and Breach
,
New York
,
1973
).
6.
Chruściel
P.
, “
The classification of static vacuum space-times containing an asymptotically flat spacelike hypersurface with compact interior
,”
Class. Quantum Grav.
16
,
661
(
1999
);
7.
Chruściel
,
P.
and
Costa
,
J.
, “
On uniqueness of stationary black holes
,”
Asterisque
321
,
195
(
2008
);
8.
Chruściel
,
P.
,
Delay
,
E.
,
Galloway
,
G.
, and
Howard
,
R.
, “
Regularity of horizons and the area theorem
,”
Ann. Henri Poincare
2
,
109
(
2001
);
9.
Chruściel
,
P.
,
Galloway
,
G.
, and
Solis
,
D.
, “
On the topology of Kaluza-Klein black holes
,” e-print arXiv:gr-qc/0808.3233.
10.
Chruściel
,
P.
and
Maerten
,
D.
, “
Killing vectors in asymptotically flat space-times. II. Asymptotically translational Killing vectors and the rigid positive energy theorem in higher dimensions
,”
J. Math. Phys.
47
,
022502
(
2006
);
11.
Chruściel
,
P.
and
Wald
,
R.
, “
Maximal hypersurfaces in stationary asymptotically flat space times
,”
Commun. Math. Phys.
163
,
561
(
1994
);
12.
Chruściel
,
P.
and
Wald
,
R.
, “
On the topology of stationary black holes
,”
Class. Quantum Grav.
11
,
L147
(
1994
);
13.
Elvang
,
H.
and
Figueras
,
P.
, “
Black Saturn
,”
J. High Energy Phys.
05
,
050
(
2007
);
14.
Emparan
,
R.
and
Reall
,
H.
, “
Generalized Weyl solutions
,”
Phys. Rev. D
65
,
084025
(
2002
);
15.
Emparan
,
R.
and
Reall
,
H. S.
, “
A rotating black ring in five dimensions
,”
Phys. Rev. Lett.
88
,
101101
(
2002
);
[PubMed]
16.
Fegan
,
H.
,
Introduction to Compact Lie Groups, Series in Pure Mathematics
(
World Scientific
,
River Edge, NJ
,
1991
), Vol.
13
.
17.
Friedman
,
J.
,
Schleich
,
K.
, and
Witt
,
D.
, “
Topological censorship
,”
Phys. Rev. Lett.
71
,
1486
(
1993
);
[PubMed]
Friedman
,
J.
,
Schleich
,
K.
, and
Witt
,
D.
,
Phys. Rev. Lett.
75
,
1872
(
1995
).
18.
Galloway
,
G.
, “
On the topology of the domain of outer communication
,”
Class. Quantum Gravity
12
,
L99
(
1995
).
19.
Galloway
,
G. J.
,
“A ‘finite infinity’ version of the FSW topological censorship
,”
Class. Quantum Gravity
13
,
1471
(
1996
).
20.
Hawking
,
S.
, “
Black holes in general relativity
,”
Commun. Math. Phys.
25
,
152
(
1972
).
21.
Hollands
,
S.
,
Ishibashi
,
A.
, and
Wald
,
R.
, “
A higher dimensional stationary rotating black hole must be axisymmetric
,”
Commun. Math. Phys.
271
,
699
(
2007
);
22.
Hollands
,
S.
and
Yazadjiev
,
S.
, “
Uniqueness theorem for 5-dimensional black holes with two axial Killing fields
,”
Commun. Math. Phys.
283
,
749
(
2008
);
23.
Moncrief
,
V.
and
Isenberg
,
J.
, “
Symmetries of higher dimensional black holes
,”
Class. Quantum Grav.
25
,
195015
(
2008
);
24.
Morisawa
,
Y.
and
Ida
,
D.
, “
A boundary value problem for the five-dimensional stationary rotating black holes
,”
Phys. Rev. D
69
,
124005
(
2004
);
25.
Myers
,
R.
and
Perry
,
M.
,“
Black holes in higher dimensional space-times
,”
Ann. Phys.
172
,
304
(
1986
).
26.
Rácz
,
I.
and
Wald
,
R.
, “
Global extensions of space-times describing asymptotic final states of black holes
,”
Class. Quantum Grav.
13
,
539
(
1996
);
27.
Robinson
,
D.
, “
Uniqueness of the Kerr black hole
,”
Phys. Rev. Lett.
34
,
905
(
1975
).
28.
Weinstein
,
G.
, “
On rotating black–holes in equilibrium in general relativity
,”
Commun. Pure Appl. Math.
43
,
903
(
1990
).
You do not currently have access to this content.