Lie theory is applied to perturbation problems of ordinary differential equations to construct approximate solutions and invariant manifolds according to the renormalization group approach of Iwasa and Nozaki [“A method to construct asymptotic solutions invariant under the renormalization group,” Prog. Theor. Phys.116, 605 (2006)]. It is proved that asymptotic behavior of solutions is obtained from the Lie equations even if original equations have no symmetries. Normal forms of the Lie equations are introduced to investigate the existence of invariant manifolds.

1.
Gaeta
,
G.
and
Mancinelli
,
R.
, “
Asymptotic scaling symmetries for nonlinear PDEs
,”
Int. J. Geom. Methods Mod. Phys.
2
,
1081
(
2005
).
2.
Kovalev
,
V. F.
,
Pustovalov
,
V. V.
, and
Shirkov
,
D. V.
, “
Group analysis and renormgroup symmetries
,”
J. Math. Phys.
39
,
1170
(
1998
).
3.
Olver
,
P. J.
,
Applications of Lie Groups to Differential Equations
(
Springer-Verlag
,
New York
,
1993
).
4.
Baikov
,
V. A.
,
Gazizov
,
R. K.
, and
Ibragimov
,
N. H.
, “
Perturbation methods in group analysis
,”
J. Sov. Math.
55
,
1450
(
1991
).
5.
Cicogna
,
G.
and
Gaeta
,
G.
, “
Approximate symmetries in dynamical systems
,”
Nuovo Cimento B Soc. Ital. Fis., B
109
,
989
(
1994
).
6.
Gaeta
,
G.
, “
Asymptotic symmetries and asymptotically symmetric solutions of partial differential equations
,”
J. Phys. A
27
,
437
(
1994
).
7.
Iwasa
,
M.
and
Nozaki
,
K.
, “
A method to construct asymptotic solutions invariant under the renormalization group
,”
Prog. Theor. Phys.
116
,
605
(
2006
).
8.
Chiba
,
H.
, “
Extension and unification of singular perturbation methods for ODEs based on the renormalization group method
” (unpublished).
9.
Iwasa
,
M.
and
Nozaki
,
K.
, “
Renormalization group in difference systems
,”
J. Phys. A
41
,
085204
(
2008
).
10.
Iwasa
,
M.
, “
Solution of reduced equations derived with singular perturbation methods
,”
Phys. Rev. E
78
,
066213
(
2008
).
11.
Chow
,
S. N.
,
Li
,
C.
, and
Wang
,
D.
,
Normal Forms and Bifurcation of planar vector fields
(
Cambridge University Press
,
Cambridge
,
1994
).
12.
Murdock
,
J.
,
Normal Forms and Unfoldings for Local Dynamical Systems
(
Springer-Verlag
,
New York
,
2003
).
13.
Arnold
,
V. I.
,
Geometrical Methods in the Theory of Ordinary Differential Equations
(
Springer-Verlag
,
New York
,
1988
).
14.
Chen
,
L. Y.
,
Goldenfeld
,
N.
, and
Oono
,
Y.
Renormalization group theory for global asymptotic analysis
,”
Phys. Rev. Lett.
73
,
1311
(
1994
).
15.
Chen
,
L. Y.
,
Goldenfeld
,
N.
, and
Oono
,
Y.
, “
Renormalization group and singular perturbations: Multiple scales, boundary layers, and reductive perturbation theory
,”
Phys. Rev. E
54
,
376
(
1996
).
16.
Chiba
,
H.
, “
C1 approximation of vector fields based on the renormalization group method
,”
SIAM J. Appl. Dyn. Syst.
7
,
895
(
2008
).
17.
Chen
,
G.
and
Della Dora
,
J.
, “
Further reductions of normal forms for dynamical systems
,
J. Differ. Equations
166
,
79
(
2000
).
18.
Gaeta
,
G.
, “
Poincare normal and renormalized forms: Symmetry and perturbation theory
,”
Acta Appl. Math.
70
,
113
(
2002
).
19.
Chiba
,
H.
, “
Simplified renormalization group method for ordinary differential equations
,”
J. Differ. Equations
246
,
1991
(
2009
).
20.
Murdock
,
J. A.
,
Perturbations: Theory and Methods
(
Wiley
,
New York
,
1991
).
21.
Hirsch
,
M.
,
Differential Topology
(
Springer-Verlag
,
New York
,
1976
).
22.
Carr
,
J.
,
Applications of Centre Manifold Theory
(
Springer-Verlag
,
1981
).
23.
Chiba
,
H.
, “
Approximation of center manifolds on the renormalization group Method
,”
J. Math. Phys.
49
,
102703
(
2008
).
24.
Chiba
,
H.
and
Pazo
,
D.
, “
Stability of an [N/2]-dimensional invariant torus in the Kuramoto model at small coupling
,”
Physica D
(unpublished).
You do not currently have access to this content.