The eigenvalue density for members of the Gaussian orthogonal and unitary ensembles follows the Wigner semicircle law. If the Gaussian entries are all shifted by a constant amount s/(2N)1/2, where N is the size of the matrix, in the large N limit a single eigenvalue will separate from the support of the Wigner semicircle provided s>1. In this study, using an asymptotic analysis of the secular equation for the eigenvalue condition, we compare this effect to analogous effects occurring in general variance Wishart matrices and matrices from the shifted mean chiral ensemble. We undertake an analogous comparative study of eigenvalue separation properties when the sizes of the matrices are fixed and s, and higher rank analogs of this setting. This is done using exact expressions for eigenvalue probability densities in terms of generalized hypergeometric functions and using the interpretation of the latter as a Green function in the Dyson Brownian motion model. For the shifted mean Gaussian unitary ensemble and its analogs, an alternative approach is to use exact expressions for the correlation functions in terms of classical orthogonal polynomials and associated multiple generalizations. By using these exact expressions to compute and plot the eigenvalue density, illustrations of the various eigenvalue separation effects are obtained.

1.
Adler
,
M.
,
Delépine
,
J.
, and
van Moerbeke
,
P.
, “
Dyson’s non-intersecting Brownian motions with a few outliers
,”
Commun. Pure Appl. Math.
62
,
334
(
2008
);
2.
Akemann
,
G.
and
Kanzieper
,
E.
, “
Integrable structure of Ginibre’s ensemble of real random matrices and Pfaffian integration theorem
,”
J. Stat. Phys.
129
,
1159
(
2007
).
3.
Anderson
,
J.
, “
A secular equation for the eigenvalues of a diagonal matrix perturbation
,”
Linear Algebr. Appl.
246
,
49
(
1996
).
4.
Bai
,
Z.
and
Yao
,
J. -F.
, “
Central limit theorems for eigenvalues in a spiked population model
,”
Ann. Inst. Henri Poincare, Sect. A
44
,
447
(
2008
).
5.
Baik
,
J.
,
Ben Arous
,
G.
, and
Péché
,
S.
, “
Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices
,”
Ann. Probab.
33
,
1643
(
2005
).
6.
Baik
,
J.
and
Silverstein
,
J. W.
, “
Eigenvalues of large sample covariance matrices of spiked population models
,”
J. Multivariate Anal.
97
,
1382
(
2006
).
7.
Baker
,
T. H.
and
Forrester
,
P. J.
, “
The Calogero-Sutherland model and generalized classical polynomials
,”
Commun. Math. Phys.
188
,
175
(
1997
).
8.
Bertola
,
M.
and
Lee
,
S. Y.
, “
First colonization of a hard edge in random matrix theory
,” e-print arXiv:0804.1111.
9.
Bleher
,
P. M.
and
Kuijlaars
,
A.
, “
Large n limit of Gaussian random matrices with external sources I
,”
Commun. Math. Phys.
252
,
43
(
2004
).
10.
Borodin
,
A.
, “
Biorthogonal ensembles
,”
Nucl. Phys. B
536
,
704
(
1998
).
11.
Borodin
,
A.
and
Sinclair
,
C. D.
, “
The Ginibre ensemble of real random matrices and its scaling limits
,” e-print arXiv:0805.2986v1.
12.
Chattopadhyay
,
A. K.
and
Pillai
,
K. C. S.
, in
Multivariate Analysis III
, edited by
Krishnaiah
,
P. R.
(
Academic
,
New York
,
1973
), pp.
117
127
.
13.
Desrosiers
,
P.
and
Forrester
,
P. J.
, “
Hermite and Laguerre β-ensembles: asymptotic corrections to the eigenvalue density
,”
Nucl. Phys. B
743
,
307
(
2006
).
14.
Desrosiers
,
P.
and
Forrester
,
P. J.
,, “
A note on biorthogonal ensembles
,”
J. Approx. Theory
152
,
167
(
2008
).
15.
Dyson
,
F. J.
, “
A Brownian motion model for the eigenvalues of a random matrix
,”
J. Math. Phys.
3
,
1191
(
1962
).
16.
Feng
,
J.
,
Jirsa
,
V. K.
, and
Ding
,
M.
, “
Synchronization in networks with random interactions: Theory and applications
,”
Chaos
16
,
015109
(
2006
).
17.
Forrester
,
P. J.
, Log-Gases and Random Matrices, www.ms.unimelb.edu.au/matpjf/matpjf.html.
18.
Forrester
,
P. J.
and
Nagao
,
T.
, “
Eigenvalue statistics of the real Ginibre Ensemble
,”
Phys. Rev. Lett.
99
,
050603
(
2007
).
19.
Forrester
,
P. J.
,
Nagao
,
T.
, and
Honner
,
G.
, “
Correlations for the orthogonal-unitary and symplectic-unitary transitions at the hard and soft edges
,”
Nucl. Phys. B
553
,
601
(
1999
).
20.
Furedi
,
Z.
and
Komlos
,
J.
, “
The eigenvalues of random symmetric matrices
,”
J. Multivariate Anal.
97
,
1382
(
1981
).
21.
Ginibre
,
J.
, “
Statistical ensembles of complex, quaternion, and real matrices
,”
J. Math. Phys.
6
,
440
(
1965
).
22.
Girshick
,
M. A.
, “
On the sampling theory of roots of determinantal equations
,”
Ann. Math. Stat.
10
(
3
),
203
(
1939
).
23.
Imamura
,
T.
and
Sasamoto
,
T.
, “
Polynuclear growth model, GOE2 and random matrix with deterministic source
,”
Phys. Rev. E
71
,
041606
(
2005
).
24.
James
,
A. T.
, “
Distributions of matrix variate and latent roots derived from normal samples
,”
Ann. Math. Stat.
35
,
475
(
1964
).
25.
Jansen
,
V. A. A.
and
Kokoris
,
G. D.
, “
Complexity and stability revisited
,”
Ecol. Lett.
6
,
498
(
2003
).
26.
Jones
,
R. C.
,
Kosterlitz
,
J. M.
, and
Thouless
,
D. J.
, “
The eigenvalue spectrum of a large symmetric random matrix with a finite mean
,”
J. Phys. A
11
,
L45
(
1978
).
27.
Kosterlitz
,
J. M.
,
Thouless
,
D. J.
, and
Jones
,
R. C.
, “
Spherical model of a spin glass
,”
Phys. Rev. Lett.
36
,
1217
(
1976
).
28.
Lang
,
D. W.
, “
Isolated eigenvalue of a random matrix
,”
Phys. Rev.
135
,
B1082
(
1964
).
29.
Macdonald
,
I. G.
,
Hall Polynomials and Symmetric Functions
, 2nd ed. (
Oxford University Press
,
Oxford
,
1995
).
30.
Maida
,
M.
, “
Large deviations for the largest eigenvalue of rank one deformations of Gaussian ensembles
,”
Electron. J. Probab.
12
,
1131
(
2007
).
31.
May
,
R. M.
, “
Will a large complex system be stable?
Nature (London)
238
,
413
(
1972
).
32.
May
,
R. M.
,
Stability and Complexity in Model Ecosystems
(
Princeton University Press
,
Princeton
,
1973
).
33.
May
,
R. M.
, in
Some Mathematical Questions in Biology
, “
How many species: some mathematical aspects of the dynamics of populations
,” edited by
Cowan
,
J. D.
(
American Mathematical Society
,
Washington, DC
,
1974
), pp.
68
98
.
34.
Makridakis
,
S.
and
Weintraub
,
R.
, “
On the synthesis of general systems
,”
General Systems
16
,
42
(
1971
).
35.
Muirhead
,
R. J.
,
Aspects of Multivariate Statistics
(
Wiley
,
New York
,
1982
).
36.
Paul
,
D.
, “
Asymptotics of large sample covariance matrices of spiked population model
,”
Stat. Sin.
17
,
1617
(
2007
).
37.
Péché
,
S.
, “
The largest eigenvalue of small rank perturbations of Hermitian random matrices
,”
Probab. Theory Relat. Fields
134
,
127
(
2006
).
38.
Rajan
,
K.
and
Abbott
,
L. F.
, “
Eigenvalue spectra of random matrices for neural networks
,”
Phys. Rev. Lett.
97
,
188104
(
2006
).
39.
Sommers
,
H. -J.
and
Wieczorek
,
W.
, “
General eigenvalue correlations for the real Ginibre ensemble
,”
J. Phys. A
41
,
405003
(
2008
).
40.
Stanley
,
R. P.
,
Enumerative Combinatorics
(
Cambridge University Press
,
Cambridge
,
1999
), Vol.
2
.
41.
Timme
,
M.
,
Geisel
,
T.
, and
Wolf
,
F.
, “
Speed of synchronization in complex networks of neural oscillators: Analytic results based on random matrix theory
,”
Chaos
16
,
015108
(
2006
).
42.
Wachter
,
K. W.
, “
The strong limits of random matrix spectra for sample matrices of independent elements
,”
Ann. Probab.
6
,
1
(
1978
).
43.
Wang
,
D.
, “
Spiked models in Wishart ensembles
,” e-print arXiv:0804.0889.
You do not currently have access to this content.