The dynamical symmetries of the two-dimensional Klein–Gordon equations with equal scalar and vector potentials (ESVPs) are studied. The dynamical symmetries are considered in the plane and the sphere, respectively. The generators of the SO(3) group corresponding to the Coulomb potential and the SU(2) group corresponding to the harmonic oscillator potential are derived. Moreover, the generators in the sphere construct the Higgs algebra. With the help of the Casimir operators, the energy levels of the Klein–Gordon systems are yielded naturally.

1.
2.
3.
A. L.
Blokhin
,
C.
Bahri
, and
J. P.
Draayer
,
Phys. Rev. Lett.
74
,
4149
(
1995
).
4.
S. -G.
Zhou
,
J.
Meng
, and
P.
Ring
,
Phys. Rev. Lett.
91
,
262501
(
2003
).
5.
K.
Sugawara-Tanabe
and
A.
Arima
,
Phys. Rev. C
58
,
R3065
(
1998
).
6.
X. -C.
Zhang
,
Q. -W.
Liu
,
C. -S.
Jia
, and
L. -Z.
Wang
,
Phys. Lett. A
340
,
59
(
2005
).
7.
C. -S.
Jia
,
P.
Guo
, and
X. -L.
Peng
,
J. Phys. A
39
,
7737
(
2006
).
8.
J. N.
Ginocchio
,
Phys. Rev. Lett.
78
,
436
(
1997
).
9.
P.
Alberto
,
A. S.
de Castro
, and
M.
Malheiro
,
Phys. Rev. C
75
,
047303
(
2007
).
10.
A. D.
Alhaidari
,
H.
Bahlouli
, and
A.
Al-Hasan
,
Phys. Lett. A
349
,
87
(
2006
).
11.
L. -Z.
Yi
,
Y. -F.
Diao
,
J. -Y.
Liu
, and
C. -S.
Jia
,
Phys. Lett. A
333
,
212
(
2004
).
12.
C. -Y.
Chen
,
D. -S.
Sun
, and
F. -L.
Lu
,
Phys. Lett. A
330
,
424
(
2004
).
13.
A.
Arima
,
M.
Harvey
, and
K.
Shimizu
,
Phys. Lett.
30B
,
517
(
1969
).
14.
K. T.
Hecht
and
A.
Adler
,
Nucl. Phys. A.
137
,
129
(
1969
).
15.
G. B.
Smith
and
L. J.
Tassie
,
Ann. Phys.
65
,
352
(
1971
).
16.
J. S.
Bell
and
H.
Ruegg
,
Nucl. Phys. B
98
,
151
(
1975
).
17.
W.
Greiner
and
B.
Müller
,
Quantum Mechanics (Symmetries)
(
Springer
,
New York
,
1994
), p.
453
.
18.
J. N.
Ginocchio
,
Phys. Rev. C
69
,
034318
(
2004
).
19.
J. N.
Ginocchio
,
Phys. Rev. Lett.
95
,
252501
(
2005
).
20.
F. -L.
Zhang
,
C.
Song
and
J. -L.
Chen
,
Ann. Phys.
324
,
173
(
2009
).
22.
A. S.
Zhedanov
,
Mod. Phys. Lett. A
7
,
507
(
1992
).
23.
D.
Ruan
, in
Frontiers in Quantum Mechanics
, edited by
J. Y.
Zeng
,
S. Y.
Pei
, and
G. L.
Long
(
Beijing University
,
Beijing
,
2001
), p.
344
.
You do not currently have access to this content.