We prove a concise factor-of-2 estimate for the failure rate of optimally distinguishing an arbitrary ensemble of mixed quantum states, generalizing work of Holevo [Theor. Probab. Appl.23, 411 (1978)] and Curlander [Ph.D. Thesis,

MIT
, 1979]. A modification to the minimal principle of Cocha and Poor [Proceedings of the 6th International Conference on Quantum Communication, Measurement, and Computing (Rinton, Princeton, NJ, 2003)] is used to derive a suboptimal measurement which has an error rate within a factor of 2 of the optimal by construction. This measurement is quadratically weighted and has appeared as the first iterate of a sequence of measurements proposed by Ježek et al. [Phys. Rev. A65, 060301 (2002)]. Unlike the so-called pretty good measurement, it coincides with Holevo’s asymptotically optimal measurement in the case of nonequiprobable pure states. A quadratically weighted version of the measurement bound by Barnum and Knill [J. Math. Phys.43, 2097 (2002)] is proven. Bounds on the distinguishability of syndromes in the sense of Schumacher and Westmoreland [Phys. Rev. A56, 131 (1997)] appear as a corollary. An appendix relates our bounds to the trace-Jensen inequality.

1.
C. W.
Helstrom
,
Quantum Detection and Estimation Theory
(
Academic
,
New York
,
1976
).
2.
P.
Hausladen
,
R.
Josza
,
B.
Schumacher
,
M.
Westmoreland
, and
W. K.
Wootters
,
Phys. Rev. A
54
,
1869
(
1996
).
3.
B.
Schumacher
and
M. D.
Westmoreland
,
Phys. Rev. A
56
,
131
(
1997
).
4.
A. S.
Holevo
,
IEEE Trans. Inf. Theory
44
,
269
(
1998
).
5.
L.
Ip
, “Shor's algorithm is optimal,” http://lawrenceip.com/papers/hspsdpabstract.html (
2003
).
6.
D.
Bacon
,
A. M.
Childs
, and
W.
van Dam
,
Chicago J. Theor. Comput. Sci.
2006
,
2
.;
D.
Bacon
,
A. M.
Childs
, and
W.
van Dam
, e-print arXiv:quant-ph/0501044.
7.
D.
Bacon
,
A. M.
Childs
, and
W.
van Dam
,
Proceedings of the 46th IEEE Symposium Foundations of Computer Science
(
IEEE
,
Los Alamitos
,
2005
), pp.
469
478
.
8.
A. M.
Childs
and
W.
van Dam
,
Proceedings of the 18th ACM-SIAM Symposium Discrete Algorithms
(
Society for Industrial and Applied Mathematics
,
Philadelphia
,
2007
), pp.
1225
1234
.
9.
C.
Moore
and
A.
Russell
,
Quantum Inf. Comput.
7
,
752
(
2007
).
10.
D.
Bacon
and
T.
Decker
,
Phys. Rev. A
77
,
032335
(
2008
).
11.
H. P.
Yuen
,
R. S.
Kennedy
, and
M.
Lax
,
IEEE Trans. Inf. Theory
IT-21
,
125
(
1975
).
12.
A. S.
Holevo
,
J. Multivariate Anal.
3
,
337
(
1973
).
13.
A. S.
Holevo
,
Probl. Inf. Transm.
10
(4)
51
(
1974
);
translated from
A. S.
Holevo
,
Probl. Peredachi Inf.
10
,
51
(
1974
) (in Russian).
14.
V. P.
Belavkin
,
Radio Eng. Electron. Phys.
20
,
39
(
1975
).
15.
V. P.
Belavkin
,
Stochastics
1
,
315
(
1975
). Note that inequality 4.3 in the statement of Theorem 5 is backward.
16.
V. P.
Belavkin
and
A. G.
Vantsian
,
Radio Eng. Electron. Phys.
19
,
1391
(
1974
).
17.
S. M.
Barnett
and
S.
Croke
,
J. Phys. A: Math. Theor.
42
,
062001
(
2009
).
18.
Y. C.
Eldar
,
A.
Megretski
, and
G. C.
Verghese
,
IEEE Trans. Inf. Theory
49
,
1007
(
2003
).
19.
C. W.
Helstrom
,
IEEE Trans. Inf. Theory
IT-28
,
359
(
1982
). Note that Ref. 21 asserted that the presented algorithm does not always converge to an optimal measurement.
20.
M.
Ježek
,
J.
Řeháček
, and
J.
Fiurášek
,
Phys. Rev. A
65
,
060301
(
2002
).
21.
Z.
Hradil
,
J.
Řeháček
,
J.
Fiurášek
, and
M.
Ježek
,
Lect. Notes Phys.
649
,
59
(
2004
).
22.
J.
Tyson
, e-print arXiv:0902.0395.
23.
P.
Hayden
,
D.
Leung
, and
G.
Smith
,
Phys. Rev. A
71
,
062339
(
2005
).
24.
H.
Barnum
and
E.
Knill
,
J. Math. Phys.
43
,
2097
(
2002
).
25.
A.
Montanaro
,
Commun. Math. Phys.
273
,
619
(
2007
).
27.
A.
Montanaro
,
Proceedings of the IEEE Information Theory Workshop
,
2008
, pp.
378
380
.
28.
M.
Hayashi
,
A.
Kawachi
, and
H.
Kobayashi
Quantum Inf. Comput.
8
,
0345
(
2008
).
29.
D.
Qiu
and
L.
Li
, e-print arXiv:0812.2378.
30.
V. P.
Belavkin
and
V.
Maslov
, in
Mathematical Aspects of Computer Engineering
, edited by
V.
Maslov
(
Mir
,
Moscow
,
1987
), pp.
146
237
;
V. P.
Belavkin
and
V.
Maslov
, e-print arXiv:quant-ph/0412031. Note that the first two equations on p. 40 should be Fi=Hi(L)1/2 and Mi=(L)+1/2Di(L)+1/2
31.
A. S.
Fletcher
, “
Channel-adapted quantum error correction
,” Ph.D. thesis,
MIT
,
2007
.
32.
A. S.
Fletcher
,
P. W.
Shor
, and
M. Z.
Win
,
Phys. Rev. A
75
,
012338
(
2007
).
33.
A. S.
Fletcher
,
P. W.
Shor
, and
M. Z.
Win
,
IEEE Trans. Inf. Theory
54
,
5705
(
2008
).
34.
A. S.
Fletcher
,
P. W.
Shor
, and
M. Z.
Win
,
Phys. Rev. A
77
,
012320
(
2008
).
35.
S.
Taghavi
,
R. L.
Kosut
, and
D. A.
Lidar
, e-print arXiv:0810.2524.
36.
R.
König
,
R.
Renner
, and
C.
Schaffner
, e-print arXiv:0807.1338.
37.
A. S.
Kholevo
,
Theor. Probab. Appl.
23
,
411
(
1978
). Note that the displayed equation between (8) and (9) should be jπjψjej2=2(1ReTr(UΠΓ1/2)). The line just after Eq. (9) should read “where V=|ΠΓ1/2|(ΠΓ1/2)1.” The final expression in the paper should be 2(1Tr|Γ1/2Π|).
38.
P. J.
Curlander
, “
Quantum limitations on communication systems
” Ph.D. thesis,
MIT
,
1979
.
39.
J. I.
Concha
, “
Signal detection in multiaccess quantum channels
,” Ph.D. thesis,
Princeton University
,
2002
.
40.
J. I.
Concha
and
H. V.
Poor
, in
Proceedings of the Sixth International Conference on Quantum Communication, Measurement, and Computing
(
Rinton
,
Princeton, NJ
,
2003
), pp.
329
332
.
41.
J. I.
Concha
and
H. V.
Poor
, in
Communications, Information, and Network Security
, edited by
V. K.
Bhargava
,
H. V.
Poor
,
V.
Tarokh
, and
S.
Yoon
(
Kluwer Academic
,
Norwell, MA
,
2003
), Chap. 7.
42.
J.
Tyson
, “
Error rates of Belavkin weighted quantum measurements and a converse to Holevo’s asymptotic optimality Theorem
,”
Phys. Rev. A
(to be published).
43.
R. S.
Kennedy
, MIT Research Laboratory of Electronics Quarterly Progress Report, Tech. Report No. 110,
1973
.
44.
45.
Y. C.
Eldar
and
G. D.
Forney
,
IEEE Trans. Inf. Theory
47
,
858
(
2001
).
46.
A. K.
Kebo
, “
Quantum detection and finite frames
,” Ph.D. thesis,
University of Maryland
,
2005
.
47.
P.
Hausladen
, “
On the quantum mechanical channel capacity as a function of the density matrix
,” B.A. thesis,
Williams College
,
1993
.
48.
P.
Hausladen
and
W. K.
Wootters
,
J. Mod. Opt.
41
,
2385
(
1994
).
49.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathmatical Physics I: Functional Analysis
(
Academic
,
New York
,
1980
).
50.
S.
Wehner
, “
Cryptography in a quantum world
,” Ph.D. thesis,
University of Amsterdam
(
2008
).
51.
M. A.
Ballester
,
S.
Wehner
, and
A.
Winter
,
IEEE Trans. Inf. Theory
54
,
4183
(
2008
).
52.
F.
Hansen
and
G. K.
Pedersen
,
Bull. Lond. Math. Soc.
35
,
553
(
2003
).
53.
J.
Tyson
,
J. Math. Phys.
(to appear).
You do not currently have access to this content.